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Abstract

In recent years there has been a growing interest among Al re-
searchers in probabilistic and decision modeling, spurred by significant
advances in representation and computation with network modeling
formalisms. In applying these techniques to decision-support tasks,
fixed network models have proven inadequately expressive to handle a
broad range of situations. Therefore, many researchers have sought to
combine the flexibility of general-purpose knowledge representation
languages with the normative status and well-understood computa-
tional properties of decision-modeling formalisms and algorithms. One
approach is to encode general knowledge in an expressive language,
then dynamically construct a decision model for each particular situa-
tion or problem instance. We have developed several systems adopting
this approach, which illustrate a variety of interesting techniques and
design issues.

To appear in Knowledge Engineering Review, 7(1), 1992.
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1 Decision Models and Decision Support Sys-
tems

Normative theories of decision making provide an appealing starting point for
the design of decision support systems (DSSs). By definition, a normative
theory attempts to prescribe the ideal performance of some activity. For
systems that produce decisions, a normative theory of decision making defines
a standard by which to evaluate and characterize performance.

Although DSSs need not produce decisions directly, they are often de-
signed to supply recommendations or hypothetical decisions for specified sit-
uations. As a foundation for modeling and computing such decisions, devel-
opers of DSSs have often turned to normative theories. Among the many
theories from statistics and operations research that have found application
in DSSs, the most common normative approach to decision-making per se is
Bayesian decision theory.

The central elements of Bayesian decision theory are:

1. a set of available acts,
2. a set of possible outcomes of acts,

3. a conditional probability distribution specifying the probability of each
outcome given each available act, and

4. a preference order ranking the possible outcome distributions according
to desirability.

The decision task in this basic setup is to select an act from those available.
Given the fundamental axioms of decision theory (properties of the prefer-
ence order and probability),! there exists a real-valued utility function over
outcomes such that the preferred act is the one that maximizes expected
utility. In other words, the utility of an uncertain act’s result is simply the
average utility of its possible outcomes, weighted by their respective proba-
bilities given the act.

The most straightforward way to apply this theory in a DSS is to con-
struct a representation of the decision situation directly in terms of these

LFor the classic exposition, see Savage [1972]. Overview discussions have also appeared
recently in this journal [Haddawy and Rendell, 1990; Lehner and Adelman, 1990].
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basic elements. Such a representation, called a decision model, includes spe-
cific constructs denoting acts, outcomes, probability distributions, and utility
functions. The DSS determines a decision or recommendation by evaluating
the model: calculating the expected utility corresponding to each alternative
act and choosing the greatest value.

Following the emergence of Bayesian decision theory and the advent of
computers, researchers have developed a substantial methodology—called
decision analysis—concerning the assessment, evaluation, and analysis of
decision models [Howard and Matheson, 1984b]. Techniques from deci-
sion analysis have refined the basic elements of decision theory, facilitating
the specification and evaluation of decision models. For example, decision
trees [Raiffa, 1968] provide additional structure on the decision situation by
factoring the act and outcome spaces into sequences of more primitive ac-
tions and events. Similarly, research on the form of utility functions and
their properties [Keeney and Raiffa, 1976] has enhanced the basic toolkit of
the preference modeler.

The relatively recent development of graphical probabilistic dependency
models has dramatically increased interest in decision modeling, particularly
within the artificial intelligence and uncertain reasoning communities. Like
decision trees, probabilistic networks? express outcomes in terms of combina-
tions of primitive events. In addition, the graphical structure of these models
captures the dependency structure among the events [Pearl et al., 1990], en-
abling the modeler to exploit conditional independence to reduce specification
and computation. Because the representation can express a broad range of
dependency structures, the modeler need not impose unrealistic system-wide
independence assumptions to achieve tractability.

Figure 1 illustrates the basic elements of a network decision model using
a graphical notation commonly called an influence diagram [Howard and
Matheson, 1984a). The diagram in the figure models the decision to replace
or repair an aircraft engine, given a report of smoke emanating from the
engine. Replacing the engine immediately is costly, but would likely enable
the airline to meet its schedule. On the other hand, attempting to repair
the engine while it is still on the airplane is probably cheaper, but may be

ZVariants of these formalisms are variously called Bayesian networks, belief networks,
influence diagrams, or go by other similar names [Neapolitan, 1990; Oliver and Smith, 1990;
Pearl, 1988; Shachter, 1986]. For further discussion of the evolution of these and other
decision-analytic concepts in artificial intelligence, see Horvitz et al. [1988].
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unsuccessful, thus causing a delay.

The decision model formalizes this situation in terms of the decision-
theoretic concepts of actions, outcomes, and preferences. Each node in the
diagram represents a decision variable, an event variable, or a utility val-
uation. The rectangular decision node ranges over the action alternatives
under consideration. In this example, we can immediately replace the possi-
bly faulty unit or attempt to repair it while it is still on the airplane. The
circular chance nodes represent the uncertainty in the decision situation.
The primary uncertainty in this case is the type of fault. We express this un-
certainty as a probability distribution over the possible faults (e.g., bearing
failure, turbine blade damage, none).

Probabilistic dependencies among events are captured by arcs between
their corresponding nodes. For example, the probability of smoke being ob-
served from the engine depends on the type of fault, hence the arc from the
node fault to the node smoke. The precise form of the dependency is de-
scribed by a conditional probability distribution for the node given its prede-
cessors, in this case Pr(smoke|fault) for all possible values of the nodes. Sim-
ilarly, the availability of the aircraft to meet its schedule depends on both the
type of fault and the replace/repair choice. This dependency is encoded by
the arcs in the diagram and a distribution Pr(availability|fault, replace /repair).

The final type of node in the diagram is the value node, expressing the
decision maker’s preferences in the form of a utility function. In this case,
the value node captures the tradeoff between airplane availability and the
costs of the replacement and repair procedures.

The decision model is completely specified when the network has no di-
rected cycles, the decision nodes are ordered, there are well-defined state
spaces for all nodes, conditional probability distributions for all chance nodes,
and a real-valued utility function for the value node. In addition, we need
to identify all of the uncertain events that will be observable at the time
decisions are made. For instance, in the engine model, the smoke report is
observed prior to the repair decision, and hence the choice of actions may
depend on the observation of smoke. Given a completely specified model, we
can manipulate the network to perform Bayesian probabilistic updating and
derive the decision policy maximizing expected utility [Shachter, 1988].

Decision analysts faced with a particular, one-shot decision problem at-
tempt to build a model like this one for that problem. An ideal, custom-
crafted model would reflect only the factors important to the problem at
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Figure 1: A graphical decision model.
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hand, and faithfully describe the situation in these terms. On evaluating
such a model, the analyst can offer recommendations to the decision maker
based on the model’s decision-theoretic implications.

However, this approach to decision modeling is not directly applicable to
decision support, where the system must consult on a range of situations.
Because a particular, completely specified decision model represents the in-
formation relevant to a unique decision situation, its implications are strictly
limited to that situation. For example, the availability event in Figure 1
refers to the availability of a particular aircraft for a particular scheduled
flight. The probabilistic relation between this event and the type of engine
fault may depend on the time until scheduled departure, the availability of
spare parts at this facility, the type and age of the aircraft, competing de-
mands on the maintenance crew, and any number of other factors. For a
particular decision situation these are constant and hence may be implicitly
factored (i.e., compiled) into the probabilistic relation. However, a system
designed to evaluate a particular compiled decision model would be useful
only to users facing identical decision situations, and hence would be worth-
while only for the most common or important of decisions.

An obvious extension—embodied by virtually all DSSs based on decision
models—is to allow quantitative parameters of the model to vary, in order
to cover a family of related decision situations. For example, some of the
contextual features enumerated above (e.g., the time until flight departure)
could be explicitly represented in the model, broadening its coverage to the
range of situations expressible in these parameters. Figure 2 depicts the
schematic architecture of a DSS based on a parameterized decision model.
In this architecture, the user describes a particular situation by specifying
values for the parameters, and the system evaluates the decision model with
those values to reach its decision or recommendation. Including externally
specified parameters in the model effectively amortizes the costs of construct-
ing the decision model and DSS over many users and uses. For example, this
strategy has been adopted by the developers of Intellipath (a commercial
version of the Pathfinder system [Heckerman et al., to appear]), who have
constructed large probabilistic network models for diagnosis in several sub-
specialties of surgical pathology. The parameterized model approach can
succeed if the family of decision situations covered by the model applies to a
sufficiently large and stable population of subjects. However, if the nature of
a consultation varies from case to case due to structural differences in the de-
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cision situation or nonparametric variations in individuals’ preferences, then
a fixed, parameterized model approach will not suffice.

When the range of decision situations to be supported by the system can-
not be described by a manageable set of parameters, the DSS must provide
facilities to customize the structure of the model. Many systems provide such
facilities in the form of an interactive modeling environment. These software
tools® allow modelers or even end users to specify model elements such as
probability distributions, utility functions, and decision alternatives. They
typically include convenient interfaces for describing and examining these
elements, as well as for evaluating and analyzing the decision-theoretic con-
sequences of partial or provisional models. Of course, these environments are
also quite useful for the designers of DSSs based on parameterized models,
of the sort displayed in Figure 2.

Although the specific capabilities of these tools vary, in all cases it is nec-
essary for the user to construct or modify the model manually, typically a
labor-intensive process requiring significant modeling expertise. Developers
of modeling environments have taken various approaches to reducing this
burden, providing incremental improvements in flexibility and convenience.
For example, Holtzman [1989] applied a rule-based approach to facilitate pa-
rameter specification and selection of prespecified decision model fragments.
Others have employed knowledge-based systems technology to perform pe-
ripheral modeling functions, such as critiquing user-defined decision mod-
els [Wellman et al., 1989], or explaining their results [Langlotz et al., 1988].
However, the difficulties of building decision models within current state-
of-the-art modeling environments still tends to restrict their use to highly
trained modelers, and their application to parameterized families of decision
situations or high-stakes one-shot decision problems.

2 Decision Models and Knowledge Bases

The primary limitations of decision models stem from their presumption of
an initial formulation of the decision situation. As several observers have
pointed out (e.g., Fox [1991]), a broad-based DSS must also support this for-

3Representative examples include Supertree, DPL, Ideal, Demos, @RISK, Crystal Ball,
and Hugin, just to name a few. Some of these are primarily research tools, while others
have been distributed commercially.
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Figure 2: A DSS based on a parameterized decision model.
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mulation task, including identifying the available options and relevant factors
of the situation. While in principle a decision model could include all con-
ceivable factors and options, in practice it is not feasible to craft decision
models of wide scope. The problem, in a nutshell, is that it is not possible
within decision models to express general relationships among concepts with-
out enumerating all the potential instances in advance. This pre-enumeration
is impracticable when the DSS faces a broad range of dynamic decision sit-
uations.

These limitations of decision models have led many to reject their use in
DSSs intended for a wide range of problem situations. To improve flexibil-
ity and decision-making scope, some advocate a knowledge-based approach,
where the DSS is built around a large collection of facts and relationships,
encoded in an expressive knowledge representation language. Some of the ad-
vantages of knowledge bases (KBs) over models encoded in standard decision-
modeling languages are that KBs permit more general relationships (among
types rather than instances), support multiple levels of abstraction and preci-
sion, and provide operators for assembling complex concepts from constituent
parts. Although it is still quite difficult to design large-scale KBs, these fea-
tures facilitate scalability and incremental extension of knowledge required
for decision support.

Recognizing the relative deficiencies of decision models does not, however,
compel us to abandon the idea of applying normative decision theory to
decision support, nor even to give up the explicit use of decision models within
DSSs. The implication, rather, is that we should not design our DSS to start
with a decision model expected to cover the range of decision situations to be
addressed. Instead, we adopt the knowledge-based approach and express the
domain facts and relationships in a general-purpose knowledge representation
language. Then, when the DSS is faced with a particular decision situation, it
operates over the KB to dynamically construct a decision model customized
for the problem at hand.

Figure 3 depicts a schematic architecture for a DSS based on dynamic,
knowledge-based construction of decision models. In contrast to the param-
eterized decision-model approach (Figure 2), DSSs employing knowledge-
based model construction (KBMC) do not start with a prespecified structure
having the form of a decision model. Instead, the domain is defined by a KB
of general facts and relationships. When a particular decision situation is
identified through interaction with the user, the DSS synthesizes a decision
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model by selecting and deriving concepts and relationships from the KB.
The model construction process is driven by the specific features of the case,
along with the overall organization of the KB. The DSS analyzes the decision
model at various stages in its development, both to offer recommendations to
the user and to direct further stages of model construction and refinement.
Designing and implementing dynamic model construction within any decision-
support environment presents numerous technical challenges and research is-
sues. Researchers in artificial intelligence have recently begun to seriously
explore these issues, developing a variety of approaches to decision model
construction. In the remainder of this paper, we review some of the main
ideas, techniques, and experiences resulting from this work.

3 Knowledge Representation for Decision Mod-
eling

One of the first issues to be faced in designing any knowledge-based DSS is
the choice of a knowledge representation language or set of representational
primitives. Using the KB as a source for decision model synthesis brings
additional constraints and utility criteria to the design problem. Foremost
among these is the requirement that the representation constructs have some
interpretation (preferably, a firm semantics) in terms of decision-theoretic
concepts such as probabilities and utilities. In addition, support for basic
elements such as actions, outcomes, and information state is critical for deci-
sion modeling. Hierarchical structure, taxonomic and inheritance reasoning,
unification, temporal primitives, and other standard features of knowledge
representation languages also facilitate the task of knowledge-based model
construction.

The most direct way to ensure that the knowledge representation has
a solid decision-theoretic semantics is to choose a language that expresses
knowledge directly in terms of probabilities and utilities. For example, re-
cent work by Halpern [1990], Bacchus [1990], Haddawy [1991], and others
has produced formal logics of probability that overcome the limitations of
decision modeling languages by providing for variables and quantification.
The logics differ in their support for statistical, temporal, and default rea-
soning, but share the ability to express general statements about the prob-
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Figure 3: A DSS employing knowledge-based model construction.



3 KNOWLEDGE REPRESENTATION FOR DECISION MODELING 12

abilities of propositions. Other recent work has focused on utility and pref-
erence representation, in particular on reconciling these decision-theoretic
concepts with the common Al notion of a goal [Haddawy and Hanks, 1990;
Wellman and Doyle, 1991].

While these languages and formalizations may eventually form the basis
for general approaches to decision-model synthesis, work on knowledge-based
model construction to date has typically relied on knowledge representations
designed specifically for the task or adapted from off-the-shelf tools. In the
rest of this section, we examine some particular approaches to model con-
struction and the representational techniques they employ.

The techniques we discuss in this section are all founded on Bayesian
decision theory. We first introduce two techniques—realized by the ALTERID
program and the representation language FRAIL3—for constructing conven-
tional decision models, with point-valued probabilities, and real-valued util-
ities. We contrast these approaches with SUDO-PLANNER, a program for
decision-theoretic reasoning at a qualitative level of precision.

3.1 Logic Programming for Model Construction

A good introduction to knowledge-based model construction is provided by
the program ALTERID [Breese, 1990]. Of the three programs discussed here,
ALTERID provides the most direct implementation of Bayesian decision the-
ory. Given a user request for information about a proposition, ALTERID
attempts a constructive proof that there exists a decision model capturing
the influences on that proposition. If such a model can be found, it is then
evaluated to answer the query.

One can query the system in two basic ways. The simplest query requests
the status of a specified proposition. ALTERID was designed to integrate
logic-based and probabilistic reasoning. It therefore attempts first to de-
duce the value (binding) for a proposition from its database of deterministic
relationships. If the deductive inference is unsuccessful, it proceeds to con-
struct a probabilistic network model based on the database of probabilistic
relationships.

Alternatively, one may ask ALTERID to optimize a particular quantity.
This quantity may be interpreted as a utility function or may be some other
metric such as cost or time. The model-building procedure then constructs a
model where some of the propositions in the model are defined as decisions,
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that is, variables under the control of the decision maker. The decision vari-
ables are then used to optimize the expected value of the particular quantity
in question. This solution phase recommends a decision policy based on the
result of this optimization.

ALTERID’s database is made up of dependency statements. Dependency
statements are very similar in form to the Horn clauses of Prolog. Like Horn
clauses, ALTERID’s dependency clauses are made up of a head and a tail. The
head of a clause is a single literal, or atomic proposition. The tail is a set of
literals.

There are three basic types of dependency statements in ALTERID. The
first type consists of Horn clauses of the form

PeQiA QuA..AQy,

where P and the ();s are positive atomic formulae. Horn clauses are used to
express facts and deterministic rules about the domain. The second type of
dependency comprises probabilistic expressions of the form

Pl,QiAQ2 N ... NQn = Pr(wplwg,ngin..Aqn);

where Pr is a conditional probability distribution over the alternative possible
outcomes (bindings), wp, for P given the alternative outcomes for Q1 A Q2 A
...A@,. Domains of possible bindings are specified by sets of constant terms.
For example, the predicate Smoke({HEAVY, MOD,NONE}, y) represents a report
about plane y indicating heavy, moderate, or no smoke.

Probabilistic dependencies describe the uncertainty regarding P in the
state of information where Q)1 A Q2 A ... A @), holds. For example, the
dependency

Smoke({HEAVY,MOD,NONE}, y)|,BearingFault({YES,NO},y), Type(y,DC10)
= Pr(wsmoke |wBearingFau1t) =

BearingFault || Smoke(HEAVY,y) | Smoke(MOD,y) | Smoke(NONE,y)
(YES,y) 75 20 05
(N0, y) 01 10 89
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relates the probability of various types of smoke report to the occurrence of
a bearing fault in planes of type DC-10.

Note that encoding a probabilistic dependency in ALTERID requires the
knowledge engineer to specify the conditional probabilities corresponding to
all possible outcomes of the head and tail propositions. In the next section,
we describe an approach toward relaxing this requirement.

Dependencies of the third type, informational, are similar in form to prob-
abilistic dependencies. The head of an informational dependency designates
a proposition as being under the control of the decision maker. Its tail de-
fines the set of propositions known at the time that decision is made, hence
identifying the events eligible for conditioning in a conditional policy.

The algorithm for constructing a probabilistic network model from a
query is simple to state. Essentially, ALTERID chains backward from the
queried node, along all “causal” (deterministic or probabilistic) dependen-
cies until reaching a terminating node. Terminating nodes are those with a
known value, or a prespecified prior distribution. For each node on this chain,
the algorithm chains forward to determine if there are facts in the knowledge
base that could be relevant to the query proposition. The resulting network
can be shown to include all relevant propositions, under certain consistency
conditions on the source knowledge base [Breese, 1990].

Constructing a decision model is essentially the same, except that the
first step of the process is to construct a value function for the proposition
designated as the value or utility node in the query. The causal, backward
inference identifies decision variables relevant to that utility function. The
remainder of the construction process is identical to that described above.

Note the similarity between ALTERID’s approach and some deductive
methods employed in other areas of artificial intelligence. For example, in the
logic-programming approach to parsing, the algorithm constructs a parse tree
as a side-effect of proving that there exists a parse for a given sentence [Pereira,
and Warren, 1980]. Similarly, some logical approaches to diagnosis operate
by deriving a set of facts that could explain the queried symptoms [Charniak
and McDermott, 1985; Hobbs et al., 1988; Reiter, 1987].

3.2 Intercausal Influences

One of the chief obstacles in assessing probability distributions might be
called “the problem of the missing cells.” In the search for more impos-
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ing terminology, we sometimes speak of the problem of intercausal influ-
ences [Henrion and Druzdzel, 1990]. The problem is as follows: when we
consider the probability of an event x, we must condition it on all events,
Y1, Y2, ..., that influence it directly. However, it is often the case that we
do not possess information about the joint conditional Pr(x|yi,ys,...), but
have only assessments of Pr(x|y;), Pr(z|yz2), ..., the conditionals on individ-
ual causes. These individual relationships do not say anything about the
interactions among the causes y; in their influence on the common effect, =
(i.e., the “intercausal” relations). Hence if we attempt to assemble the joint
conditional distribution we are faced with “missing cells.”

A concrete example from medical diagnosis may make this more clear. It
is plausible that we would be able to assess the probabilities of yellow skin
given jaundice alone and given pickled liver alone. We can also reasonably
assess a base rate probability of yellow skin given neither jaundice nor pickled
liver. However, it is typically more difficult to assess the yellow skin proba-
bility given both jaundice and pickled liver. We refer to this difficulty as “the
problem of the missing cells” because we often lack data or intuition to fill in
all required elements of the conditional probability matrix. In general, the
joint conditional requires an exponential number of probabilities, whereas
the number of direct influences is of course linear.

This is the most important problem addressed by FRAIL3, a language for
specifying probabilistic networks [Goldman, 1990; Goldman and Charniak,
1991]. FRAIL3 is used by Wimp3, a program for natural language processing.
Its algorithm for network construction is quite similar to that of ALTERID.
We focus here on FRAIL3’s facilities for addressing the missing cell problem.

FRAIL3’s primary contribution is to provide linguistic support for a com-
mon modeling technique for handling intercausal relations. Pearl [1988] has
suggested that we can often apply one of a relatively limited number of
stereotyped or canonical interactions among causes. In particular, he pro-
poses that interaction models be based upon “noisy” or “leaky” versions
of conventional logic gates. Motivated by problems in diagnosis, he places
particular emphasis on the so-called “noisy-OR gate.”

The noisy-OR gate is a probabilistic version of the conventional OR. When
we assume that some event (say the event of our patient having yellow skin)
acts as a noisy-OR, that amounts to the following assumption. There are two
separate ways that this state could come about. It could be caused either by
jaundice or by pickled liver. Moreover, these two causes work independently.
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So, if Pr(yellow skin|jaundice) = p and Pr(yellow skin|pickled liver) = q,
then the probability of yellow skin given both causes is the probability jaun-
dice will cause yellow skin plus the probability that jaundice fails to cause
vellow skin times the probability that pickled liver causes it, or p+ (1 — p)q.

FRAIL3’s rules are similar to the dependency statements in ALTERID, but
allow the user to separately specify different causal influences on some event,
and specify a gating function used to combine the different influences. The
user may specify gating functions, and some, like the noisy-OR, noisy-AND,
noisy-ONEOF, are built into the language. For example, one could have rules
of the form:

symptom(yellow-skin) :- pathology(jaundice), p.

;; the probability of yellow-skin given jaundice is p.
symptom(yellow-skin) :- pathology(pickled liver), q.

;; the probability of yellow-skin given pickled liver is q.

predicate-distribution(symptom, noisy-or).
;; symptom events combine causal influences according to the
;3 noilsy-or model.

Although intercausal relationships potentially have an exponential num-
ber of degrees of freedom, in many cases the interactions take a much more
restricted, regular form. It is incumbent on knowledge representations for
KBMC to take advantage of these regularities when they exist, or when they
may be assumed by default. FRAIL3’s approach provides a modular way
to amalgamate a dynamically assembled set of relationships according to
built-in or user-defined combination rules.

3.3 Qualitative Representation

Perhaps the most common objection to the use of quantitative decision mod-
els is that it is impractical to specify all the parameters numerically. Critics
complain that providing these numbers poses an intolerable assessment bur-
den, or even in some cases that the necessary probabilities and utilities may
not exist. Bayesians have a philosophical answer to the existence complaint,
namely that probabilities and utilities represent subjective judgments of be-
lief and preference and hence do not depend on statistical data or objective
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measurement. Nevertheless, the practical knowledge engineering objections
to the use of exact, point-valued probabilities are not so easy to dismiss.
Precise judgments can be difficult to collect, and the expense of assembling
them may not be worthwhile when decision problems are simple.

One way to alleviate the model specification problem is to admit less
precise descriptions of probability distributions and utility functions. For
example, rather than specify a point-valued probability, one could instead
provide upper and lower bounds defining an interval on which the proba-
bility lies. Because an interval represents a weaker constraint than a point
probability value, it should be easier to validate this form of judgment. In
general, one might partially specify a decision model by providing a set of
constraints that the probabilities and utilities must satisfy. Such a model
would not necessarily determine a unique decision, but the implications it
does produce are stronger because they are based on weaker premises. More-
over, the flexibility in precision should ease the burden of model construction,
both for human modelers and automated knowledge-based systems.

There are several decision modeling languages that support some form
of partial specification. For example, interval influence diagrams [Fertig and
Breese, 1989] are an abstraction of influence diagrams that allow bounds on
conditional probability expressions. Other approaches (e.g., that of Clark et
al. [1990]) use monotonicity constraints and sign relations similar to those
employed in qualitative reasoning [Weld and de Kleer, 1989].

Qualitative probabilistic networks (QPNs) are a form of partially specified
graphical decision models that express qualitative relations among relevant
decision and event variables [Wellman, 1990b]. In brief, qualitative relations
represent monotonicity constraints on the joint probability distribution of
the variables, restricting the sign of relationships and their interactions. For
instance, a positive influence of one binary variable, a, on another, b, means
that the probability that b is true given A is greater than its probability
given A, all else being equal. QPNs can also express qualitative versions of
the intercausal relations discussed above. In particular, qualitative synergies
specify whether two event variables interact positively or negatively in their
joint influence on a third [Wellman and Henrion, 1991].

Adopting qualitative or other partially specified decision models as the
target language of a model construction procedure offers significant advan-
tages for the specification of the source KB. The precise probabilistic rela-
tionship among events can be highly context sensitive. Therefore, providing
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flexibility in precision permits the knowledge engineer to express relations
that are valid over a broader variety of contexts. In the next section, we de-
scribe a multilevel representation scheme and a model construction procedure
designed specifically to generate qualitative probabilistic networks.

3.4 Levels of Abstraction

Designers of knowledge representation mechanisms for decision support or
other automated reasoning tasks recognize the importance of facilities for
encoding and manipulating concepts at multiple levels of abstraction. Mul-
tiple levels are required, for example, by reasoners that use abstraction to
structure the search space (as in hierarchical planning), and by problem
solvers that need to express their results at varying levels of detail (as in
model-based diagnosis). For a variety of problem-solving tasks, a designer
either cannot identify in advance the most appropriate level of abstraction,
or must provide the reasoner with several perspectives on the same concept,
to be integrated dynamically in the course of solving a particular problem.

When we allow multiple encodings of a concept to coexist within a knowl-
edge base at different levels of detail or generality, several technical issues
arise. These include how the relations associated with each version of the
concept translate across encodings, and how the reasoner selects and changes
perspectives among the various levels. Such issues play a central role in
the design of decision model construction schemes [Leong, 1991b; Wellman,
1990a]. We illustrate some of these issues with an example from SUDO-
PLANNER [Wellman, 1990a], a decision-theoretic medical therapy planner
that constructs decision models from a multilevel knowledge base of actions
and events.

Perhaps the greatest difficulty in automated model construction is the
problem of keeping potentially relevant factors out of the model. Because a
model is effectively a closed world, failure to include a factor is justified only
when that factor is unimportant to the task. However, it is typically difficult
to establish that a given factor is of negligible importance. In medicine,
for example, it seems that any event can be related to any other by some
conceivable path of associations. Because reasoning with decision models
cannot commence until the model is completed, an exhaustivity constraint
delays the production of any results whatsoever from the DSS.

Abstraction is a winnowing technique for selective model construction. A
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DSS capable of building models at multiple levels of abstraction can tailor a
separate model for each distinct issue it faces in assembling its recommenda-
tions. This permits the reasoner to avoid simultaneous consideration of all
the factors potentially relevant to the decision problem.

The source language for SUDO-PLANNER’s model construction process is
a multilevel representation whose basic elements are action and event con-
cepts. The multiple levels are induced by a taxonomic structure based on
specialization relations among the concepts. In addition to the taxonomic
relations, there are qualitative domain relations describing the probabilistic
associations among actions and events of the corresponding types.

Figure 4 presents a view of part of SUDO-PLANNER’s medical therapy
KB. Effect arcs relate the simple taxonomy of primary surgical actions at
the left of the diagram to the major event variables of interest. Among
these are MI (heart attack) and stroke presence, a small cluster of disease
severity variables, and mortality. All paths eventually lead to the special
utility variable, value.*

Taxonomic relationships (denoted by thick undirected links) are repre-
sented in NIKL [Vilain, 1985], the implementation language for the termi-
nological component of SUDO-PLANNER’s KB. The thinner domain relation
links are maintained by SUDO-PLANNER’s special-purpose assertional mod-
ule.

Inspection of Figure 4 reveals that the multilevel KB is fluid, in that
we cannot partition the nodes into levels such that domain relations are
exclusively within levels and taxonomic relations exclusively between them.
For instance, any partitioning would require that surgery and vessel repair
be on different levels because of their taxonomic relation, and on the same
level because of their mutual links to value.

Close inspection of the KB also reveals that relations at varying levels
may disagree. For example, there is a direct positive link from vessel repair
to stroke, yet its subconcept, endarterectomy, has a negative effect on stroke
through its influence on C'VD. The apparent contradiction is tolerable in this
case, since SUDO-PLANNER’s model construction algorithm prefers the more
specific path when considering endarterectomy. Incoherence with respect

4Space constraints dictate that we gloss over technical details of SUDO-PLANNER’s med-
ical content as well as its QPN formalism. The information provided here should suffice
to 1llustrate the main points about multilevel model construction.
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Figure 4: Part of SUDO-PLANNER’s multilevel event variable KB.
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to value, on the other hand, would cause SUDO-PLANNER’s decision-making
module to generate contradictory decision recommendations.

A full discussion of coherence requires an examination of how the KB
is interpreted by SUDO-PLANNER’s model construction procedure, described
below. One important characteristic of the procedure is its treatment of in-
heritance. The intended meaning of an effect link from ev; to evy is that each
variable of type ev; affects some variable of type evy (a universal/existential
interpretation). Therefore, event variables inherit outgoing relation links
from their taxonomic ancestors (i.e., their supertypes).

Figure 5 illustrates the use of inheritance in a fragment of the sUDO-
PLANNER KB. In the linear taxonomy at the left, aneurysm size is a kind of
disease severity variable because size is an indicator of severity for the disease
“aneurysm presence.” The variable is further specialized by restricting the
location of the aneurysm to the abdominal aorta (AAA). The same concept
specialization relates the two rupture variables.

Further effect relations are implicit in the taxonomic relationships. For
example, AAA rupture positively influences mortality, by inheritance from
its parent, aneurysm rupture. In other cases, more specific knowledge sup-
plements or replaces inherited information. AAA size positively influences
aneurysm rupture by virtue of being an aneurysm size, but more specifically
it influences the rupture of a particular type of aneurysm, AAA.

Another possibility is that a direct link at one level could correspond to
a more complex set of paths at another. For example, aneurysm size (and
AAA size as well) exhibits a negative influence on wvalue by virtue of being
a disease severity. At a more specific level, aneurysm size influences value
via a path through aneurysm rupture and mortality. Although the more
detailed path supports the same conclusion in this case, the direct relation
leads to simpler and more efficient models. On the other hand, the detail
is necessary for reasoning about interactions with other variables that share
with aneurysm size segments of their influence path to value.

4 A Simple Model Construction Example

In this section, we illustrate some of the representation and construction
ideas presented above with a small example of a model generated by SUDO-
PLANNER.
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Figure 5: Fragment of the KB relating AAA size and value. Effect links are
inherited downward in the antecedent taxonomy.
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SUDO-PLANNER’s model construction cycle (see Figure 3) consists of the
incremental evolution of a central QPN. From the perspective of the model
constructor, the KB is an event variable graph in the general form of Figure 4.
At each iteration, the constructor modifies the current QPN according to
relations in the KB. The decision module analyzes the modified QPN, which
then forms the basis for the next cycle of model construction. The process
continues until no QPN modification operators are applicable (that is, the
KB is exhausted) or it is halted by its invoker. Because the decision module
continually analyzes the QPN throughout its evolution, each modification
must preserve validity. This requirement places strong constraints on the
modification operators and the KB, and in fact, it is not completely met by
SUDO-PLANNER’s model construction mechanisms.

There are two basic operations for modifying QPNs. SUDO-PLANNER
alternates between elaboration steps that replace existing relationships with
more detailed pathways, and backward chaining steps that extend the model
to include additional related variables. This chaining operation is essentially
identical to the dependency chaining methods employed by ALTERID’s model
construction procedure.

The starting point for the model construction process in our example is
the QPN of Figure 6a. The initial QPN relates AAA size to value via the
most general route in the KB. In this instance, the negative link derives
from the KB relation between disease severity (an ancestor of AAA size)
and value, as shown in Figure 6b.

() (b)

Figure 6: (a) Initial QPN for the running example. (b) The link corresponds
to the most general effect of AAA size found in the event variable KB.

Elaboration consists of three stages: choose a link to elaborate, find elab-
orating paths, and merge new structure into the QPN. For the initial QPN,
stage 1 is trivial because there is only one link. To elaborate it, SUDO-
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PLANNER searches for paths from AAA size to value that derive from origins
more specific than disease severity. The path selected is the chain

aneurysm size —» aneurysm rupture — value.

To merge this path, a new variable, aneurysm rupture, is introduced to the
QPN, and the elaboration path simply replaces the original link.

In the general case, merging is more complicated. When introducing a
new variable, SUDO-PLANNER must connect it to all existing QPN variables—
not just those on the new paths—according to relations encoded in the KB.
Performing the update correctly is tricky because the new variable may be
connected to existing ones via complex and possibly redundant pathways.

In a backward chaining step, SUDO-PLANNER searches for variables in the
KB that affect a particular existing QPN variable. The mechanics of this step
are straightforward: choose a variable to extend back, find its predecessors in
the KB, and merge the new structure according to the procedure described
above.

The first attempt at backward chaining on the running example produces
no modification because the chosen variable, AAA size, has no predecessors.
SUDO-PLANNER next applies an elaboration step, which replaces aneurysm
rupture with AAA rupture. Backward chaining on AAA rupture finally yields
a significant QPN modification, shown in Figure 7. The operation in gen-
eral is more complicated. Choosing the right variable to extend can have a
significant impact on the efficiency of the model constructor.

The QPN of Figure 7 illustrates the potential benefits of abstraction
to a model constructor like SUDO-PLANNER. The relation between AAA-
repair and value given AAA-rupture, is summarized by a single link. If the
model analyzer is able to resolve the direction of the relation (at this point
unknown), it can determine the form of its preferred surgical policy (operate
if the size exceeds some threshold) without needing to elaborate the complete
set of negative pathways indicating the undesirable effects of surgery.

5 Issues in Model Construction

In this section we outline some of the issues facing designers and users of
KBMC systems. As more DSS developers adopt this approach, new issues
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Figure 7: QPN after backward chaining on AAA rupture.
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and research topics will come to the fore. Here we briefly recount the current
state of understanding in characterizing and evaluating KBMC systems.

5.1 Triggering and Elaboration

A central design problem for KBMC methods is how to initiate and guide
the model construction process. One way to classify alternate approaches is
by the form of top-level objective driving the model-building operation.

A query-driven system constructs a model in response to a request for
information about a particular proposition or formula. According to this
view, the KB is a comprehensive collection of general relationships over the
domain. The DSS obtains a query or proposition of interest from the user
and interrogates the KBMC system. The program uses its knowledge base
to choose a set of event variables that are relevant to the query, assembles
them into a model, and evaluates the model to provide an answer. In a
query-driven aircraft diagnosis system, queries might ask for the probability
that a particular component has a fault given a set of crew or test reports.

In a decision-driven system, the input query would refer to a particular
choice available to the decision maker. The output is a recommendation
for action with respect to that particular decision frame. Relationships in
the knowledge base are used to find the event variables that may affect the
outcome of this decision. The KBMC procedures assembles these variables,
along with the action variables describing the decision alternatives, into a
cohesive decision model. For example, the aircraft model of Figure 1 might be
constructed in response to a decision-driven query about whether to replace
the engine.

In a value-driven system, model construction is organized around the
specification of the decision maker’s preferences. Such a system starts by
constructing the value structure (identifying outcome attributes, constrain-
ing the functional form, etc.), and proceeds to search for relevant decisions,
uncertain events, and evidence variables. The search for variables to include
in the model is driven by their direct and indirect relation to utility. A va-
riety of factors—measurability and salience, for example—may bear on the
suitability of the available outcome and event descriptors for a particular
case [Wellman, 1986]. Both SUDO-PLANNER and ALTERID construct decision
models in a value-driven manner. The idea of using value considerations to
drive model building as performed by human decision analysts has long been
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advocated by Keeney [1986].

Query-, decision-, and value-driven model construction can be viewed
on a spectrum of automated responsibility for constraining the modeling
process. Query-driven systems rely on the user to identify specific events of
interest, decision-driven systems identify their own events based on relevance
to specified decisions, and value-driven systems identify their own decisions
based on fundamental concerns of utility.

Data-driven construction differs from the other approaches in that the
pattern of events to be considered follows directly from the description of
the observations. A data-driven approach is possible when the overall task
to be performed is relatively constant (e.g., interpret an image), but the
set of concepts relevant to particular task instances can vary dynamically.
For example, one might use such a system to interpret image data from
some diagnostic test. The system would receive an array of pixel values,
and apply rules or models to construct a probabilistic network—structurally
defined by the data—for image interpretation.® Another such example is the
construction of a genetic pedigree [Goldman, 1990; Goldman and Charniak,
1990]. In this case, the probabilistic dependence structure in the model
mirrors the structure of the family tree. It is clearly worthwhile to exploit
this structure in a straightforward (data-driven) manner rather than consider
it as a general KBMC problem.

It is important to note that these approaches are complementary, not nec-
essarily exclusive or competitive. In one possible hybrid strategy, a decision-
driven system might begin by identifying utility attributes influenced by the
given alternatives, and then switch to a value-driven mode to find other
factors affecting those attributes. In another type of hybrid strategy, the
model would be data-initiated but the remainder of the construction con-
trolled by considerations of value. In the context of manual decision model-
ing, Buede [1986] discusses alternative ways to organize the process of elu-
cidating value structure, showing that sometimes it is beneficial to take a
decision-driven approach to modeling preferences themselves. This suggests
that a mixture of strategies are often appropriate in all phases of model
construction.

Scf. Geman and Geman’s [1984] (static) network-based approach to interpreting pho-
tographs. Levitt et al. [1990] describe a dynamic model approach.
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5.2 Control of Construction

The triggering and elaboration scheme provides basic guidance for the broader
task of controlling the model construction process. Given an overall construc-
tion goal, how should the system select among alternative paths of model-
building operations? Principled design of control strategies requires a deep
understanding of the properties of probabilistic and decision models. In this
section we discuss some of these important properties and their relation to
the problem of controlling model construction.

Approaches to control can be divided into two basic categories, accord-
ing to whether they explicitly apply decision-theoretic criteria at the meta-
level. Techniques for decision-theoretic control of inference have recently
been developed for a variety of reasoning problems [Dean and Boddy, 1988;
Horvitz, 1988; Russell and Wefald, 1991; Smith, 1988]. Such methods may
be particularly applicable to the KBMC task because the objects of interest
(probabilistic relationships and preferences) already have decision-theoretic
interpretations. However, explicit metalevel control also demands knowl-
edge about the relation of computational operations to properties of decision
models. For example, in applying decision-theoretic criteria to the problem of
optimally reformulating a probabilistic network model [Breese and Horvitz,
1990], we require a meta-model relating model evaluation cost to the various
reformulation options. In broader KBMC tasks, these meta-models may be
more difficult to specify. Indeed, none of the KBMC systems described above
applies explicit decision-theoretic control at the metalevel.

Lack of an explicit metalevel control mechanism, however, does not pre-
clude a KBMC system from applying decision-theoretic principles to control.
Such principles may be employed implicitly in (i.e., compiled into) the con-
struction procedure. For example, SUDO-PLANNER exploits “justified focus”
rules to prune some paths of model elaboration that cannot possibly lead
to useful decision-theoretic conclusions. Laskey [1991] proposes model revi-
sion criteria, justified by offline theoretical analysis, that could be used by
a KBMC system to invoke and direct incremental changes to the current
model.

One central control issue is the size and level of detail of the model to
be constructed.® The conventional wisdom is that a larger, more detailed,

5The following discussion is based in part on presentations at the AAAI-91 Workshop
on Knowledge-Based Construction of Probabilistic and Decision Models, particularly those



5 ISSUES IN MODEL CONSTRUCTION 29

model generally provides greater fidelity than a simple model, but is more
expensive to evaluate and process. A model construction algorithm must
(explicitly or implicitly) balance the benefits of a larger model with the costs
of its construction and evaluation. For explicit metalevel analysis of this
issue, the system would need to characterize model “quality” as a function
of size or other model attributes. An alternative perspective is that bigger
may not be better for all purposes. Larger models may introduce additional
structural and parametric uncertainties that might not plague a more concise
representation. Additionally, it is difficult to comprehend the output of a
large model. For purposes of decision support, it may be more fruitful to
construct a model that highlights tradeoffs on a few important dimensions
rather than a more complete model that may in some sense be more accurate.

An additional control issue is whether and how to interleave evaluation
and solution of the model with model construction operations. The basic
KBMC architecture presented in Figure 3 illustrates that model construc-
tion can be followed sequentially by model evaluation, or model evaluation
can be used to guide further model construction. In general, one would ex-
pect that there are considerable gains to interleaving model evaluation with
construction. In particular, partial evaluation can help to identify those parts
of the knowledge base that are irrelevant or unimportant to the problem in-
stance at hand. Fach of the KBMC systems described above interleaves
construction and evaluation in the course of problem solving. For example,
ALTERID periodically examines the structure of the value function in order
to prune unimportant variables from the model, thereby focusing subsequent
construction.

5.3 Knowledge Base Development

In Section 3, we discuss issues of knowledge representation primarily from
the perspective of expressiveness. Another important aspect of the repre-
sentation is ease of encoding knowledge. One of the motivating factors in
constructing a KBMC system is the substantial cost and effort involved in
the manual specification of a model for each query or decision situation. With
a KBMC system, the costs of specifying the knowledge base can be amortized
over the many applications of the system to construct specific models.

by Max Henrion, Eric Horvitz, and Kathryn B. Laskey.
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Knowledge engineering is greatly complicated if the meaning of constructs
in the source representation language depends on idiosyncrasies of the model
construction procedure. To simplify the KB development process and pro-
mote a clear declarative semantics, the KBMC system should avoid relying
on low-level features of the form of knowledge encoding (e.g., the order of
clauses in the KB, or whether a relation is explicitly or implicitly specified).
If successful, the knowledge representation language would allow encoding
of domain information in an intuitive manner without requiring that the
knowledge engineer possess deep knowledge of the model construction pro-
cess. Ideally, a system user could modify and update the KB in response to
changes in the domain or user preferences, without relying on the services of
a model construction specialist.

Although similar concerns arise in the development of any knowledge-
based system, issues of ease of construction are of particular concern in the
realm of probabilistic systems due to the inherent context-sensitivity of prob-
abilistic relationships. In general, the validity of an individual probabilistic
relationship can only be evaluated in the context of a full dependency model.
Since most model construction source languages allow one to express individ-
ual probabilistic relationships, it is easy to encode inconsistent information
in the knowledge base. For example, there may be several models at different
levels of detail explaining a single fault. Although the availability of mul-
tiple alternative models may be desirable for decision-support applications,
there must be a mechanism to resolve these inconsistencies when a KBMC
approach is applied to autonomous decision making.

This discussion suggests that issues relating to constructing and verifying
knowledge bases for KBMC systems are quite complex. Although current
research efforts have focused primarily on the technical feasibility of encod-
ing models for a wide range of situations, the practical ability of knowledge
engineers and users to specify broad KBs using expressive knowledge repre-
sentation languages is largely untested.

5.4 Learning

The task of constructing or learning probabilistic and decision models from
data [Cooper and Herskovits, 1991; Geiger et al., 1990] is complementary to
that of constructing them from KBs. The two operate on inputs of different
forms (sets of cases versus general facts and relationships), and therefore both
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should play a role in situations when both data and knowledge are available.
Learning procedures could be adapted to produce entries in the source KB,
from which the KBMC procedure would then produce a model. One can also
imagine using a learning procedure to revise or complete a model initially
constructed from the KB. To date, there has been very little work at the
intersection of learning probabilistic models and KBMC.

5.5 Non-Monotonicity and Model Construction

Given a particular state of the world and a query, a KBMC system constructs
a model and generates a recommendation. Suppose the world state changes
in some small way or new information becomes available. What is the status
of the previously generated recommendation? In most KBMC systems the
status of the recommendation is indeterminate because it is possible that
the change in state has invalidated the model’s recommendation. Thus the
KBMC is non-monotonic: adding information can cause the retraction of
previous conclusions.

Practical KBMC systems must deal with this type of non-monotonicity.
There must be some mechanism for determining whether a previously con-
structed model remains valid or must be reconstructed from scratch. One can
envisage a system that selectively modifies a previously constructed model in
response to changes in the knowledge base. This would require development
of a model assumption maintenance facility. One could annotate models or
model fragments with sets of assumptions (possibly defaults) that must hold
in order for the model to be applicable.

6 Research in KBMC

As suggested by the long list of open issues and technical challenges, research
on KBMC is still in an early and active stage. Current work is proceeding
on many fronts, with a variety of techniques and application tasks under
investigation. In addition to traditional decision-support tasks, researchers
are building systems to automatically construct decision models for plan-
ning [D’Ambrosio and Fehling, 1989; Hanks, 1990; Hansson et al., 1990;
Wellman, 1990a), natural language understanding [Goldman and Charniak,
1990; Goldman and Charniak, 1991], situation assessment, and diagnosis
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across time [Provan, 1991].

Much of the work on knowledge representations for KBMC focuses on rule
languages similar to those employed by ALTERID and FRAIL3. Poole [1991]
has shown that a probabilistic extension of Horn clauses is expressive enough
to encode the dependency structure and conditional probabilities for arbi-
trary probabilistic networks. Since they permit variables, the rule languages
are thus strictly more expressive than propositional decision models.

Other representation work includes development of general logics of prob-
ability (mentioned above), languages for temporal patterns of probabilistic
relationships [Kanazawa, 1991], and approaches based on taxonomic repre-
sentation languages developed in the Al representation community [Leong,
1991a; Saffiotti, 1990; Yen and Bonissone, 1990].

In addition to the basic approaches to guide the construction process
listed in Section 5.1, some have proposed that argumentation structures
might be used to organize the development of decision models [Fox, 1991;
Laskey, 1990; Loui, 1989]. In this approach, the model-building process is
driven by the imperative to find support and refutations for alternative lines
of reasoning. As the arguments are refined and developed, the corresponding
decision model takes shape.

Finally, research on knowledge-based construction of decision models may
draw on lessons derived from work on knowledge-based construction of other
types of mathematical models. For example, there has recently been much
effort in the model-based reasoning community on constructing appropriate
models from more general representations [Nayak et al., 1991; Weld, 1991].
Techniques for constraint logic programming can be viewed as using expres-
sive rule languages for constructing linear programs (or models in other con-
straint theories). Indeed, the motivation and opportunity for KBMC arises
within every modeling discipline, and many of the ideas for effective model
construction will span the different fields.

7 Conclusion

Research to date on constructing decision models from knowledge bases has
served to demonstrate the basic feasibility of the approach, at the same time
identifying central design issues and raising technical problems. Although
none of the existing systems are ready for routine use, we are encouraged by
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their reasonable level of performance given the combinatorial nature of their
task and the lack of fine tuning of the methods.

A few years ago it would have been a simple matter to describe all work
in KBMC within a few pages, if not paragraphs.” Given the current level
of activity, we find it impossible in the space of an article to present an ex-
haustive account of relevant research. The problem is rendered more difficult
by the open-ended scope of the task at this immature stage, and the fact
that much of the work itself is preliminary in nature. In the foregoing dis-
cussion we have attempted to provide a rough framework for characterizing
systems that build decision models from knowledge bases. We have illus-
trated some of the possible approaches and design issues with accounts of
our early experience on the task. As more researchers consider the problem,
we expect a more solid understanding, more capable systems, and of course
more technical challenges to emerge in the years ahead.
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