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Explaining “Explaining Away”

Michael P. Wellman and Max Henrion

Abstract—Explaining away is a common pattern of reasoning in which
the confirmation of one cause of an observed or believed event reduces the
need to invoke alternative causes. The opposite of explaining away also
can occur, where the confirmation of one cause increases belief in another.
We provide a general qualitative probabilistic analysis of intercausal
reasoning and identify the property of the interaction among the causes
(product synergy) that determines which form of reasoning is appropriate.
Product synergy extends the qualitative probabilistic network (QPN)
formalism to support qualitative intercausal inference about the directions
of change in probabilistic belief. The intercausal relation also justifies
Occam’s razor, facilitating pruning in the search for likely diagnoses.

I. EXPLAINING AWAY

Keeping track of the dependency or causal structure among events
is critical in uncertain reasoning. One fundamental reason is the
inherent asymmetry between predictive (or causal) reasoning, from
cause to effect, and diagnostic (or evidential) reasoning, from effect to
cause. Pearl [9] clearly illustrates this asymmetry with the “sprinkler”
example, which is depicted in Fig. 1. Either A, “it rained last night,”'
or B, “the sprinkler was on last night,” could cause C, “the grass
is wet.” C' could in turn cause E, “the grass is cold and shiny,” as
well as F', “my shoes are wet.”

Observation of one effect E', cold and shiny grass, is evidence for
(', wet grass, and predicts the other effect F', wet shoes. Confirmation
of one cause A, rain, also leads to the expectation of C', wet grass.
However, it does not provide any evidence for the alternate cause
B, sprinkling. Suppose prior observation of wet grass had led to
defeasible acceptance of sprinkling. In a default reasoning scheme,
confirmation of rain should lead to a retraction of the hypothesis
that the sprinkler had been on. In a probabilistic reasoning scheme, it
should lead to a reduced probability of the sprinkler hypothesis, even
though the possibility of simultaneous sprinkling and rain is allowed.

This common and intuitively compelling pattern of reasoning is
called explaining away because one cause explains the observed
effect and, therefore, reduces the need to invoke other causes. This
qualitative pattern of reasoning is entirely compatible with Bayesian
inference when probabilistic influences reflect causal relationships
[3], [9]. It is also the essence of Occam’s razor: slice away hypotheses
that are unnecessary to account for the evidence. Indeed, Paek [8]
applies minimization of causal justifications to realize the explaining
away pattern in a circumscriptive logic.

Pearl [9] uses the revealed asymmetry of inference with respect
to causal direction to argue for incorporating causal relations in
default reasoning schemes. Although inference rules implementing
explaining away have been well studied [2], [9], precise and general
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'By convention, upper-case letters denote propositional literals, whereas
lower-case letters denote variables. Thus, variable a, “rain last night,” can
take on the value - or its negation A.
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Fig. 2. Drinking-and-driving example. Explaining away fails in this case
because the two causes are positively related given their common effect.

conditions under which this pattern is valid have not appeared in
the literature. Pearl provides these conditions for the special case
of linear/Gaussian models (see p. 351 of [10]). Geffner provides a
probabilistic justification of explaining away in terms of e-semantics
[1]. Both of these demonstrations are illustrative but do not capture
the full range of situations in which such inference is appropriate.

Explaining away is an example of intercausal inference [3], that is,
reasoning between two causes with a common effect, in contrast with
pure causal or pure evidential reasoning. Although explaining away
is often intuitively compelling, there are cases in which it appears
inappropriate. Consider the following example, which is illustrated by
the causal model of Fig. 2. You notice this newspaper headline about
a well-known politician: “Senator Jones Killed in Car Accident.”
You idly wonder whether she might have been drunk. The headline
gives no indication of whether she was at fault in the accident or
even whether she was a driver or passenger. You had no previous
information about her driving or drinking habits, but you know that
alcohol is a major cause of fatal car accidents. Reading on, you
find out that Jones was indeed the driver and that no other vehicle
was involved in the accident. How does this new information affect
your belief that she had been drinking? Without knowledge of any
accident, the fact that the Senator was driving might reduce the
suspicion that she had been drinking. Given the accident, however,
the fact that she was the driver would increase the suspicion. Note
that this pattern of plausible reasoning is the opposite of explaining
away: Knowledge of a common effect renders a positive dependence
between the causes even though the causes were independent or even
negatively dependent a priori.

The goal of this correspondence is to provide a general analysis of
intercausal reasoning that accounts for both of the iliustrated patterns
of reasoning, and that makes precise the conditions differentiating
them. Our choice of a probabilistic approach reflects the uncertainty
that is central to causal explanation tasks and is supported by the
observation that explaining away is a natural consequence of some
generic structures commonly employed in probabilistic modeling.

Although the probabilistic formulation refers to quantitative de-
grees of belief, it does not necessarily require precise numeri-
cal probabilities for application. Indeed, our analysis is qualitative,
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concerning the direction—but not the magnitude—of probabilistic
dependencies. Our premise is that the critical distinctions correspond
to intuitive categories of interaction among causes and that further
precision would be impractical or less convenient and, for many
purposes, unnecessary. This position is supported by the observation
that common vocabulary includes numerous qualitative concepts of
causal interaction. For example, we often say that causal factors act
independently or synergistically, that one cause (a “gating condition”)
enables or inhibits another, or that a set of available inputs are
complementary or substitutable with one another. Rain and sprinkling
independently cause wet grass; drinking amplifies the causal relation
between driving and car accidents.

We formalize these concepts using the qualitative probabilis-
tic network (QPN) representation [15], which is an abstraction of
Bayesian networks. The analysis of intercausal reasoning extends this
formalism by introducing new qualitative characterizations of causal
interactions complementary with the existing QPN synergy relations.

In the remainder of this correpondence, we present a formal
analysis of qualitative intercausal relations. After reviewing the notion
of qualitative probabilistic influence in Section I, in Section III, we
analyze intercausal reasoning with uncertain causal influences and
identify the conditions under which explaining away will occur. We
generalize these conditions in Section IV to handle prior intercausal
relationships and partial evidence on the effect. Finally, in Section
V, we present a view of Occam’s razor suggested by intercausal
relations.

II. QUALITATIVE PROBABILISTIC NETWORKS

Our analysis of intercausal inference under uncertainty is based on
the QPN formalism for qualitative probabilistic reasoning [15]. In a
qualitative probabilistic network, variables are represented as nodes in
a graph with directed edges defining probabilistic relationships. As in
Bayesian networks [10] and other graphical schemes, connectedness
in the graph represents the dependency structure of the underlying
probability distribution [11]. However, rather than specify the dis-
tribution precisely with numeric probability tables, QPN’s merely
constrain the conditional probabilities using qualitative influences. A
sign & € {+.—.0.7} denoting the direction of qualitative influence
between nodes is associated with each edge. Fig. 3 depicts an example
QPN representing beliefs about the health of a friend. Event A, that
our friend has a cold, increases® the probability of C', that he is
sneezing. Event B, that he has an allergic reaction, also increases
this probability. On the other hand, event F, that he recently took
an antihistamine, reduces the probability of sneezing. Event D, that
our friend is allergic to cats, increases the probability of an allergic
reaction, as does E, that a cat is present. (Whereas, for ease of
exposition, the variables in our examples are binary, the definition
of qualitative influence that follows, like most other definitions and
theorems, applies equally to multivalent discrete and continuous
variables.)

For the general definition of qualitative influences, consider a QPN
with a directed edge from « to c—and optionally some other variables
collectively denoted .~—with links to c. In Fig. 3, for example, «
would comprise b and f. This structure dictates that the probability
distribution for ¢ can be specified conditionally on « and ..

Definition 1 (Qualitative Influence): We say that a positively in-
fluences ¢ in a QPN G, which is written ST (a.c¢.G), if and only
if (iff) for all values «y > a2, co, and all assignments . to other
predecessors of ¢ in G

Pr(c > colara) > Pr(e > colaze).

2We use terms such as increase and decrease in the nonstrict sense, unless
explicitly stated.

Fig. 3. Example QPN representing beliefs about a friend’s health. Ar-
rows labeled “+” and “—” denote positive and negative causal influences,
respectively.
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Fig. 4. Schematic QPN transformation for intercausal inference. The quali-
tative influence & of @ on b on observation of C' indicates whether explaining
away occurs.

An equivalent condition is that the probability density function (or
mass function in the discrete case) for a given ¢ and &, fa(-|cr)
obeys the monotone likelihood-ratio property:

falai|er ) > falaz]erx)

falar|cax) = falaz|czx)
for all @; > a2, ¢; > ¢z, and . This property ensures that increasing
a increases the expected value of ¢.> We can replace > in (1) with
< or =, yielding the conditions for negative influence S~ or zero
influence S°, respectively. S° means that « and c are independent
for all values of .. Note that the condition S requires the inequality
(1) to hold for all assignments » and similarly for $~ and S°.
Therefore, it is quite possible that none of the three conditions hold.
The condition S” indicates that the qualitative influence is ambiguous
or that it is not known which, if any, of the relations holds.

Q)

[II. PROBABILISTIC INTERCAUSAL RELATIONS

Suppose we observe our friend sneezing C', which raises the
probability of his having a cold A, and the probability of his having
an allergic reaction B. If we know that he is allergic to cats D, then
learning that a cat is present E' lends confirmation of the allergic
reaction B. This explains away the sneezing and, therefore, reduces
the probability of the cold A.

This process of intercausal inference can be cast as transformation
of a causal graph or QPN, which is illustrated in general form in
Fig. 4. Again, a and b are causes of c. For generality, we allow that
there may be other causes of ¢ (collectively represented by ) and
that « and b in turn may have causal antecedents (b’s are collectively
labeled y; a’s do not figure in the example). Fig. 4(a) depicts this
initial situation. Note that because their only connecting path is via
direct links to ¢, a and b are marginally independent although they
are conditionally dependent given c.

The basic explaining-away scenario starts with an observation of
the effect variable to be explained c. Suppose that ¢ is propositional

31n writing these ratios here and elsewhere, we assume that all conditional-
probability terms are well defined and nonzero. These assumptions could be
relaxed at the expense of explicatory complexity. For further discussion of
these probabilistic inequalities, see [7] and [15].
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and that the observed value is C'. To represent observation in a
probabilistic network, we instantiate the observed node and modify
the dependency structure in the graph so that the nodes of interest
become conditional on the observation. The evidence instantiation is
tantamount to reversing the links from « and b to ¢ [12], as shown in
Fig. 4(b). The signs on the reversed links remain positive, indicating
that observing (' increases the probability of higher values of a and
b. In addition, the reversals introduce a new intercausal link between
«a and b, accounting for the fact that the variables become dependent
on observing C'. The explaining-away pattern is characterized exactly
by the negativity of this intercausal influence. For propositional a and
b, the relation S~ (a.b) in the graph of Fig. 4(b) would mean that

Pr(B|ACry) < Pr(B|Cry) £ Pr(B|AC.ry).

Hence, belief in A decreases belief in B.

Even if we knew that the signs on the original links from a to ¢
and b to ¢ were positive, without further constraint, the sign on this
new intercausal link would be ambiguous [15]. The question is this:
What condition on the causal combination of @ and b would enable
us to derive a negative intercausal influence on observing C'?

Theorem 1 (Explaining Away): Let a and b be predecessors of
¢ in a QPN G, and let + denote an assignment to c’s other
predecessors, if any. Let obs(co. G) denote the QPN obtained from G
on observation of co. Suppose S°(a.b.G). Then, S~ (a.b. obs(co. G)
iff for all a1 > az, by > bo, and &

feleolarbya) <ff(co|agblr)
folcolaibad) = folcolazbaa)

This follows directly from Bayes’s rule, reversing the dependence
of ¢ on b.}

Because it plays such a pivotal role in explaining away, we
introduce terminology and notation for the intercausal relation (2).

Definition 2 (Product Synergy): Let a and b be predecessors of ¢
in G, and let . denote an assignment to ¢’s other predecessors, if
any. Variables « and b exhibit negative product synergy with respect
to a particular value ¢o of ¢ in G, which is written X ({a.b}.c0.G)
if for all ay > az, by > by and x

&)

feleolarbia) felcolazbar) < foleolarbaa) felcolazbie).  (3)

Note that (3) is just the product form of (2). Thus, negative product
synergy requires that the proportional increase in the probability of
o on raising b is smaller for higher values of «. Hence, the causal
contribution of a given variable is greatest when that variable is the
only active (high-valued) cause. It is this type of interaction that
underlies explaining away.

We define positive product synergy, X and zero product synergy
X by substituting > and =, respectively, for < in (2). Theorem 1
is also valid with either “+” or “0” substituted for “—” in both the
intercausal influence S~ and corresponding product synergy X . As
for qualitative influences, the negative, zero, and positive product
synergies are not exhaustive. The condition X" indicates that the
product synergy is ambiguous or that it is not known which, if any,
of the relations hold.

We illustrate the main result by reconsidering the two examples
of explaining away. In Fig. 1, there is a negative intercausal relation
between rain A and the sprinkler B, given their common effect,
wet grass, C'. Fig. 3 displays a corresponding negative intercausal
relation between the cold and allergic reaction given their common
effect, sneezing. According to Theorem 3, this kind of relationship is
appropriate if and only if we believe that negative product synergy

4Complete proofs of this and other results are provided in the Appendix.
A propositional version of Theorem 1 appears in {6].

holds in each of these cases, that is, our beliefs about the causal
effects must satisfy

Pr(C|AB) _ Pr(C|AB)

Pr(C[4B) ~ Pr(C|AB)
In words, the proportional increase in probability of C', wet grass, due
to learning B, sprinkling, is smaller given A, rain, than given 4, no
rain. On the other hand, the proportional increase in the probability
of sneezing due to learning that our friend has an allergy is less given
a cold than given no cold. Both of these conditions seem eminently
plausible—given one cause is present; the incremental effect of the
second cause is less than it would be if the first were absent.

If negative product synergy does not seem immediately compelling,
one can also derive it as a generalization of the leaky noisy-OR [4],
[10], which is a plausible model for either situation. The noisy-
OR dictates that each of the two causes may be sufficient alone to
cause the effect and that the causal mechanisms are independent. The
leakiness allows that even if neither A nor B occurs, C' may occur for
another unspecified reason (a leak L). It is easy to show that the leaky
noisy-OR relation implies negative product synergy with respect to
the presence of the effect and therefore leads to explaining away [16].
This result generalizes straightforwardly to cases with more than two
causal variables. In contrast, noisy-NOR models—where causes lead
to the negation of the effect—exhibit zero product synergy.

Now, let us reconsider examples for which explaining away does
not seem to apply. The drinking and driving Senator from Fig. 2
is one such instance. The case from Fig. 3 of the two causes of
an allergic reaction is another. Given that an allergic reaction B is
observed, knowledge that our friend is allergic to cats D would tend
to increase the probability that a cat is present E, and vice versa.
There is a positive intercausal relationship between D and E|, given
B. According to the positive version of Theorem 1, this relationship
holds iff positive product synergy applies—that is, iff

Pr(B|DE) _ Pr(B|DE)

Pi(B|DE) = Prx(B|DE)’
For our example, this condition says that the proportional increase
in probability of an allergic reaction due to the cat being present is
greater, given that our friend is allergic to cats, than it would be if he
were not. This is evident, given that the cat would have only indirect
effects, if any, if he were not allergic to cats. Therefore, the right-
hand side of (5) would be at or near unity, whereas the left-hand side
would be significantly larger.

(©)

4

IV. EXTENSIONS

A. Dependent Causes

The premise of Theorem 1 requires that causes « and b be
marginally independent. We can generalize the result, as long as any
prior dependence between the causes is in the same direction as the
intercausal effect of observing their common finding:

Theorem 2:

S™(a.b.GY A X ({a.b}.co.G) = S (a.b. obs(co. G)).

For example, suppose we know our neighbor habitually listens to
weather reports and turns off the sprinkler when rain is forecast. This
negative prior relation between the two causes is in the same direction
as the intercausal relation, and hence, the tendency of the sprinkler
to explain away the rain hypothesis is only strengthened.

On the other hand, suppose we believe in Murphy, the perverse
raingod who likes to make it rain soon after a sprinkler has been used.
This induces a positive prior dependence between the causes, rain and
sprinkler. In this case, the intercausal relationship after observing
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Fig. 5. Two causes « and b, with partial evidence e, for their common eff-

ect c.

wet grass becomes ambiguous and cannot be determined by purely
qualitative analysis.

B. Indirect Evidence

Theorem 1 also presumes that the effect variable ¢ is observed
directly. Can we generalize the main result to situations where we
have only indirect evidence for ¢?

Suppose we observe the value of variable e, which is an effect of
¢. For example, in the sprinkler model, we might observe E, cold
and shiny grass. To determine the intercausal implications of this
observation, we investigate the interaction relation of a and b on e
when ¢ is factored out. This situation is depicted in Fig. 5.

To propagate intercausal reasoning through indirect evidence, we
appeal to another synergy concept, which was previously introduced
for QPN’s [15]:

Definition 3 (Additive Synergy): Let a and b be predecessors of ¢
in G, and let x denote an assignment to ¢’s other predecessors, if any.
Variables a and b exhibit negative additive synergy with respect to
variable ¢ in G, which is written Y~ ({a.b}.c. G), if for all a1 > a2,
by > by, x, and ¢o

Pr(c > colarbir) + Pr(c > colazbzv)
< Pr(c > colaibar) + Pr(c > colazbi ).

Positive additive synergy, Y+ and zero additive synergy Y° are
defined similarly, substituting > and =, respectively, for <. An
important difference between additive and product synergy is that
the former is defined with respect to the variable c, rather than to
a particular value co, that is, the additive synergy condition holds
for all values of c. The disparity is due to the distinct roles of
these relations in qualitative probabilistic inference. Note, however,
that when ¢ is a propositional variable, Y('({a.b}. c) is identical to
X*({a,b}.C), except in substituting addition for multiplication in
(3) (or differences for quotients in (2)). Although neither subsumes
the other in general, when both of the individual influences of each
cause on the effect have unambiguous signs (+ or —), then there
are entailment relationships between them. See [16] for a detailed
exposition of these relationships.

The following result establishes (for the propositional case) that
evidence that is positively related to the effect maintains intercausal
relations given some particular patterns of product and additive
synergy.

Theorem 3: Let red(c.G) denote the QPN obtained from G
by reducing (averaging out) variable c. Suppose X% ({a,b}.C.G),
Y*2({a.b}.c.G), S%(c.e.G), S°(a.e,G), and §°(b,e.G). Then,
X% ({a.b}, E.red(c.G)) if either of the following hold:

1. 61 = 62 and 63 = +.

2. 51 = —62 and (53 = -.

observe F1, F2
—_—

(@ )

Fig. 6. Multiple findings and complementary hypotheses: (a) QPN with three
diseases that can cause two findings; (b) observing findings F' and F2.
Explaining away produces two negative intercausal influences, which can be
chained to reveal a positive relation between d' and .

Under certain circumstances, we can generalize Theorem 3 to the
case of nonpropositional c. In essence, product synergy extends from
co t0 e as long as eo supports co but does not distinguish among
¢ # ¢o.° For propositional ¢, it matters only whether the observed
value e was more likely given C than C.

V. OccaM’S RAZOR AND INTERCAUSAL REASONING

Suppose that there are several causal hypotheses—each of which
could explain an observed effect by itself—related to the finding
according to a negative product synergy relationship. Given the
negative intercausal relations between each pair of hypotheses given
the finding, invoking one hypothesis reduces belief in the others. This
process is analogous to the action of Occam’s razor in slicing away
hypotheses that are multiplied beyond necessity.

On the other hand, if two or more causes interact with a positive
product synergy, their joint occurrence may be a more likely expla-
nation of the finding than would either of them alone. The synergistic
effects of drinking and driving and of cat allergies and cats are two
examples. We might be tempted to invoke “Occam’s glue” in such
cases as the multiple hypotheses adhere to each other to form a
coherent scenario. Perhaps, however, it is more appealing to regard
the conjunctive relation as suggesting their combination as a single
compound hypothesis. Seen in this light, they are not being multiplied
beyond necessity and are therefore not actually contravening the
principle of parsimony.

Note that when there are multiple evidence variables, positive
intercausal relationships and complementary hypotheses can arise
even when all synergy relations are negative. Consider the QPN
in Fig. 6(a), where three diseases—represented by propositional
variables d!, d?, and d®—can variously account for two findings
f' and f2. Suppose that all influences are positive and that the
pairwise interactions satisfy negative product synergy. According
to Theorem 1, given both findings F' ! and F?, we obtain the two
negative intercausal influences S~ (d",d*) and S ~(d?.d*), which is
depicted in Fig. 6(b). Chaining these, we can conclude S§*(d".d*) on
removal of d?, indicating that events D! and D? are complementary.
This conclusion fits the intuitive observation that the findings can be
explained either by the single disease D? or by the combination D!
and D?. If D! and D® are common diseases and D is relatively
rare, it is quite possible that the combination is more probable than
the single disease. Thus, the intercausal analysis dictates how causal
events should be clustered in compound hypotheses. Events that are
complementary in the causal explanation become related by positive
influences without explicit set-covering computations.

Qualitative intercausal reasoning has also proven useful in the
design of algorithms for quantitative probabilistic diagnosis. Because
exact inference is intractable for large multiply-connected networks,
there has been considerable interest in approximation algorithms. One

5To establish this, we divide c into values for which X% holds (C') and
those for which it does not (C') and then apply the previous theorem. In the

process, we must be careful that the division does not invalidate the conditional
independence of a and b from e given c.
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such approach for diagnosis is to use heuristic search to find the most
probable hypotheses that can explain the observed findings. In one
large medical diagnosis application—quick medical reference-belief
network (QMR-BN) [13]—there are almost 600 diseases and, hence,
2890 potential diagnoses. However, in most cases, only a fraction of
these diagnoses have substantial probability. Search-based algorithms,
such as TopN [5], concentrate on the most probable hypotheses.
Given the relative probabilities of the candidate diagnoses, TopN
computes bounds on their absolute probabilities. The bounds may be
successively narrowed as the search continues.

The key to the design of efficient search-based algorithms is an
admissibility heuristic that allows them to prune subtrees that can
provably lead only to hypotheses whose probability is less than some
threshold. The TopN algorithm starts out by examining single-disease
hypotheses and extending them incrementally. Intercausal analysis
can identify which additional diseases are complementary and can
therefore possibly lead to more probable hypotheses. It also reveals
which diseases are competitive and can therefore lead only to less
probable hypotheses. Thus, intercausal analysis provides a suitable
basis for an admissibility heuristic. Because QMR-BN uniformly
assumes noisy-OR relations among diseases and findings, the diseases
are always competitive. Initial results for this network using this
pruning criterion show rapid convergence to narrow probability
bounds in most cases [5]. The analysis described in this paper
generalizes this approach to handle networks not only with noisy-
OR relations, as in QMR-BN, but with any interactions satisfying
negative product synergy.

VI. CONCLUSIONS

Intercausal relations play a central role in the combination of
diagnostic and predictive reasoning. The qualitatively significant
property of interacting hypotheses is whether they compete with
or complement one another in explaining the observed findings.
In the former case, one cause explains away the other, given the
observation. In addition, we have shown that explaining away is
not the only pattern of intercausal reasoning. To account for this
distinction, we have derived a general probabilistic criterion (negative
product synergy) that precisely justifies explaining away.

The main appeal of qualitative probabilistic relations is that they
require minimal precision yet capture some of the most significant
behaviors. However, qualitative probabilistic inference may be useful,
even for numerical systems, as a means of explanation to human users
in a way that might correspond more directly to intuitive categories
[6].

We also believe that it may be computationally advantageous to
maintain these qualitative distinctions even when numeric information
is available. As described in Section V, intercausal relations quali-
tatively restrict the reasonable patterns in which to cluster events
in compound hypotheses. These constraints can be exploited in
diagnosis to prune the space of composite hypotheses at a high level,
based on qualitative admissibility.

APPENDIX
PROOFS

Theorem 1: Let a and b be predecessors of ¢ in a QPN G.
Let obs(co.G) denote the QPN obtained from G on observation
of ¢ = cp. Suppose S°(a.b.G). Then, S~ (a.b.obs(co.G)) iff
X~ ({a.b}.c0.G).

Proof: Let y denote the predecessors of b in G and x the
predecessors of ¢ other than « and b, if any. The distribution for

a given b, x, and y on observation of co is, by Bayes’s rule

feleolabry) falalbry)
feleolbay) '

By conditional independence, we can drop the y condition from the
f. terms and the x condition from the f, term on the right-hand
side. The qualitative influence of a on b is positive iff (6) obeys the
monotone likelihood ratio property (1) and negative iff the inequality
of (1) is reversed. Substituting (6) in the likelihood ratio for a; given
a pair of values for b, by > bz, we obtain

feleolaibia) falai|bry) folcolbair)
felcolaibaw) falailbey) felcolbra)”

Ffalalbeory) = (6)

™
Since f.(colb;r) does not depend on a;, the ratio (7) is increasing
or decreasing in «; in direct correspondence with

felcolaibia) fa(ailbry)
fe(colaiboa) falailbay)”

®)

By the conditional independence of « and b given y (the 50
condition), fa(ai|biy) = fa(ailb2y); therefore, these terms may be
canceled from the expression, leaving

fp({’gl(libl.l‘)
felcolaiba)’

The direction of change of this expression with respect to a; is exactly
the product synergy condition. O
Theorem 2:

S%(a.b.G) A X*({a.b}.co.G) = S*(a,b.obs(co, G)).

Proof: Proceed as for Theorem 1 up to the reference to un-
conditional independence. The ratio (8) can be factored into two

parts:
(f::(Fol(libl-l‘J> (fa(01|bly))
feleolaibaa) ) \ falaslboy) )
The first part increases according to the sign of product synergy, and
the second is contingent on the direct influence of a on b prior to
observation of co. When the two agree, the direction of the entire
expression is determined, establishing the qualitative influence of a
on b posterior to the observation. O
Theorem 3: Let red(c.G) denote the QPN obtained from G
by reducing (averaging out) variable c. Suppose X! ({a.b}.C.G),
Y% ({a.b}.c.G), $%(c.e.G), S°(a.e.G), and S°(b.e.G). Then,
X% ({a.b}. E.red(c.G)) if either of the following occur:
1. 6 = & and 63 = +.
2. (51 = —(52 and (‘73 = -.
Proof: Let H;; = Pr(E|a;ibjx) and Gi; = Pr(Cla;b;x).
Since e is conditionally independent of a and b given ¢

H.; =Pr(E|C)Gi; +Pr(E|CY1 -G ;).
Expanding terms and simplifying, the product of two H expressions is
Hi jHii =G ;jGiaA? +(Gij + Ge) Pr(E|CHA

where A = [Pr(EIC) - Pr(E]C_‘)], which is positive or negative
according to é3. Since A” is always positive, the comparison of a
pair of H products is the same as for the corresponding G products if
the comparison of second additive terms also agrees. When A > 0,
the sign of this second comparison is determined by the additive
synergy relation and when A < 0 by its negation. 0O
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An Approximate Nonmyopic
Computation for Value of Information

David Heckerman, Eric Horvitz, and Blackford Middleton

Abstract—Value-of-information analyses provide a means for selecting
the next best observation to make and for determining whether it is better
to gather additional information or to act i diately. Determining the
next best test to perform, given uncertainty about the state of the world,
requires a consideration of the value of making all possible sequences of
observations. In practice, decision analysts and expert-system designers
have avoided the intractability of exact computation of the value of
information by relying on a myopic assumption that only one additional
test will be performed, even when there is an opportunity to make a
large number of observations. We present an alternative to the myopic
analysis. In particular, we present an approximate method for computing
the value of information of a ser of tests, which exploits the statistical
properties of large samples. The approximation is linear in the number
of tests, in contrast with the exact computation, which is exponential in
the number of tests. The approach is not as general as is a complete
nonmyopic analysis, in which all possible sequences of observations are
considered. In addition, the approximation is limited to specific classes
of dependencies among evidence and to binary hypothesis and decision
variables. Nonetheless, as we demonstrate with a simple application, the
approach can offer an improvement over the myopic analysis.

Index Terms—Belief networks, decision theory, nonmyopic, probability,
value of information.

I. INTRODUCTION

When performing diagnosis, a person usually has the opportunity
to gather additional information about the state of the world before
making a final diagnosis. Such information gathering typically is
associated with costs and benefits. These costs and benefits can be bal-
anced with decision-theoretic techniques—in particular, procedures
for computing value of information. These techniques form an integral
part of many decision-theoretic expert systems for diagnosis, such as
Gorry and Barnett’s program for the diagnosis of congestive heart
failure [1].

In most diagnosis contexts, a decisionmaker has the option to
perform several tests and can decide which test to perform after seeing
the results of all previous tests. Thus, a person or expert system should
consider the value of all possible sequences of tests. Such an analysis
is intractable because the number of sequences grows exponentially
with the number of tests. Builders of expert systems have avoided
the intractability of exact value-of-information computations by im-
plementing myopic or greedy value-of-information analyses. In such
analyses, a system determines the next best test by computing the
value of information based on the assumption that the decisionmaker
will act immediately after seeing the results of the single test [2].
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