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Abstract

The securitiesmarket is the fundamentaltheo-
retical framework in economicsand financefor
resourceallocation under uncertainty Securi-
ties sene both to reallocaterisk andto dissem-
inateprobabilisticinformation. Completesecuri-
tiesmarkets—whichcontainonesecurityfor ev-
ery possiblestateof nature—supporParetoop-
timal allocationsof risk. Completemarketssuf-
fer from thesameexponentialdependencenthe
numberof underlyingeventsasdojoint probabil-
ity distributions. We examinewhethermarkets
canbe structuredand “compacted”in the same
manneras Bayesiannetwork representationsf
joint distributions. We shaow that, if all agents’
risk-neutralindependencieagreewith theinde-
pendenciegncodedn themarket structurethen
themarketis opemationally complete risk is still
Paretooptimally allocatedyet the numberof se-
curities can be exponentially smaller For col-
lections of agentsof a certaintype, agreement
on Markov independencies sufficient to admit
compaciandoperationallycompletemarkets.

1 INTRODUCTION

A large portion of the world’s economictransactionsn-

volve the exchangeof risk. For example,insurancepolicy

holderstransfersomeof their risksto insuranceproviders,
in exchangefor surepayments Farmershedgeagainsthe
dangerof adwerseweatheby exchangingutureswith less
risk-aversespeculators.Insurancecontracts futures, op-

tions, derivatives, and even stocks,sene to continuously
reallocaterisk aroundtheglobe.

All of thesepotentiallycomplex financialinstrumentscan
be modeledas portfolios of much simpler instruments,
calledsecurities Securitiesare essentiallylottery tickets:
they pay off in somegood(e.g.,mong) contingenton the
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outcomeof uncertainevents.A key resultin thetheoryof
economicaunderuncertaintyis that, if agentshave access
to “enough” securities(i.e., accesgo a completemarlket),
thenequilibriumallocationsof risk areParetooptimal. Un-
fortunately “enough”is, for all intentsand purposes{oo
much:thenumberof requiredsecuritiess equalto the size
of the joint spaceof all relevant uncertainevents,andis
thusintractablein ary realisticsetting.

The prospecbf representingrobabilitiesover joint event
spaceswas once viewed in much the same light—

theoreticallyideal, but practically unachi&able. The ad-
vent of graphicalmodeling languagesand in particular
Bayesiametworks (BNs), changedhis view dramatically
Theselanguagepermit concisedescriptionsof otherwise
unwieldy joint distributions, as long as sufficient condi-
tional independencieamongeventsare present. In this
paper we demonstratehat, amongcertainpopulationsof

agents,conditionalindependencean be analogouslyex-

ploited in the designand configurationof securitiesmar

kets.

Section4 shavs how securitiesmarketscanbe structured
accordinghethetopologyof ary BN. As with BNs, if suf-
ficientindependencieareencodedn thestructurethesize
of the marlet is exponentially reduced. Although struc-
turedmarketsarenot completein thetraditionalsensewe
derive conditionsunderwhich they arenonethelesspera-
tionally complete meaningthatthe equilibrium allocation
of risk is still Paretooptimal. Section5.1 givesa general
sufficient condition: if, in equilibrium, all agents’risk-
neutral independenciesagreewith thoseencodedin the
market’s structure,thenthe market is operationallycom-
plete. Section5.2 characterizeshe computationalcom-
plexity of pricing securitiesandfinding arbitrageopportu-
nities in a structuredmarket. Section6 derivesa special
casewhenagreemenbn true independenciess sufiicient
to yield operationallycompletemarkets; we also explain
why agreemenbn true independencies not sufficient in
general.



2 BACKGROUND AND NOTATION

We considera modeleconomyof N agents,indexed: =
1,2,..., N, eachwith a subjectve probability distribution
Pr; over statesof the world and a utility function w; for
monegy. Denotethe setof all possiblestatesof the world
as) = {wi,ws,...}. Thew aremutually exclusive and
exhaustve.

Stateis often more conciselyand naturally characterized
asthe setof outcomesof events Denotethe setof mod-
eledeventsas Z = {A;, A4s,...,Ayp}. Underlying M
arbitrary eventsis a state space() of size || = 2¥,
consistingof all possiblecombinationof eventoutcomes.
Corversely ary setof statescanbe factoredinto a setof
M = [1g|Q|] events.Without furtherassumptionthe two
representationareequialentin bothexpressvity andsize,
althoughthe event factorizationmay be more natural. In
mostof whatfollows, the events{ A;} arethefocusof at-
tention,with Q theimplied joint outcomespace.We refer
tothe{A,} astheprimary events soasto distinguishthem
from the other 22" — M/ possiblesetsof states,eachof
whichis alsoanevent.

2.1 DECISION MAKING UNDER UNCERTAINTY

In generalanagents utility is definedoverthe crossprod-
uctof availableactionsandpossiblestatesWe assuméaere
that utility arisesfrom anunderlyingutility for monsgy. If

agent’s utility for u dollarsis u(u), thenits utility U for a
particularactiona is its expectedutility for money,

ot = o (1) = £ o (1), @

whereTgw) is agenti’s wealthin dollarswhenactiona is

takenin statew (the dependencef TZM ona is implicit).
Agenti’s decisionsaremadeby maximizingexpectedutil-
ity, or choosingheactiona thatmaximizes(1).

We assumehroughouthatutility increasesnonotonically
with wealth. Local risk aversion at u, denotedr;(u), is

definedasr;(u) = —u} (u)/ui(u). Agenti is risk-avese
if 7;(u) > 0 for all u, or, equivalently, if u; is everywhere
concae. Underthis condition,the agentalways prefersa
guaranteegaymeniequalto theexpectedvalueof alottery
ratherthanthe lottery itself, thusexhibiting an “aversion”
to gambling. The agentis risk-neutal if r; (u) = 0 for all

1, Or u; is linear; in this case,maximizing (1) coincides
with maximizingexpectedoayof.

2.2 RISK-NEUTRAL PROBABILITY

Notice thatan outsideobsenrer O, privy only to agenti’s
chosenactions,cannotuniquelydiscerneitherthe agents
belief or its utility: the two quantitiesare inextricably
linked(Kadane& Winkler, 1988). Any oneof acontinuous

family of belief—utility pairs offers an equallyvalid ratio-
nalizationfor the agents actions. Thatis, for any function
f(w), subjectie probabilitiesproportionalto Pr;(w) f (w)
matchedwith utilities u; (T§“’>) /f(w) resultin stratei-
cally equivalentutilities for actionsU;(a).

Risk-neutal probabilitiesaredefinedas
PriN(w) o Prj(w)u) (Tgw)) , @)

wherew; is the derivative of utility (Nau, 1995). Agent
i's obsenable behaior, manifestedas actions, is in-
distinguishablefrom that of a hypothetical agent with
transformedprobabilitiesPri™ (w) andreciprocallytrans-
formed utility u2N(u) = w;(p)/u} (T§“)). It turnsout
thatthe obserer canuniquelyassessigenti’s risk-neutral
probabilities.In fact,all standarctlicitationproceduresle-
signedto revealagenti’s beliefsbasedon monetaryincen-
tives(deFinetti, 1974;Winkler & Murphy, 1968)—forex-
ample,queryingthe pricesat which the agentwould buy
or sellvariouslottery tickets—essentiallyeveal Pri™, and
notPr; (Kadane& Winkler, 1988). Theagentsobservable
beliefsarein effectits risk neutralprobabilities notits true
probabilities.

2.3 SECURITIESMARKETSFOR THE
REALLOCATION OF RISK

Underuncertainty risk-averseagentswill desireto hedge
or insure againsttheir risks by distributing wealth across
states.For example,insuringthe delivery of a packageef-

fectively transferswealthfrom the padage-receivedstate
to the padage-lost state. The Arrow-Debeu securities
market is the fundamentaltheoreticalframework in eco-
nomics and financefor resourceallocation underuncer

tainty (Arrow, 1964; Dreze,1987; Mas-Colell, Whinston,
& Green,1995). A security denominatedn money or

other exchangeablegood, pays off variously contingent
uponthe realizationof an uncertainstate. Let (4) denote
a securitythat paysoff onedollar if andonly if the event
A occurs.If the price of this securityis p¢4) perunit, then
agenti’s decisionto purchasezng units is equivalentto

acceptinga lottery with payof (1 — p(4)z{* if 4 occurs,
and—p) 2! otherwise.Positive z{* indicatesa quan-
tity to buy, andnegative a:§A> aquantityto sell.

In a market of S such securities, let p =
(P, p ... p9))  denote the securities’ prices,
andx; = (:cgl),xf), . ,xgs)) denotethequantitiesof the
securitiesheldby agenti. Agenti’s utility for securitieds
its expectedutility for money (1), wheretheagentschoice
of actionsis how muchto buy or sell of eachsecurity

Agentstradesecuritieswith eachotherprior to revelation
of the world state.In aneconomyof N agentsgachcon-
tinually maximizing (1), pricesadjustuntil all buy orders



matchwith sell ordersfor all securities. A market is in
competitiveequilibriumatpricesp if andonly if

N
=1

wherex;(p) is agenti’s optimal demandvectorat prices
P.

A securitiegnarketis termedcompletef it containsatleast
|©2|—1 linearly independensecurities Suchamarketguar
antees,under classicalassumptionsthat equilibrium en-
tails a Paretooptimal or efficient, allocationof risk.

A conditionalsecurity{A; | A2) paysoff contingenton A

andconditionalon A,. Thatis, if Ay occurs,thenit pays
out exactly as(A; ); onthe otherhand,if A, occurs,then
thebetis calledoff andary price paidfor thesecurityis re-
funded(de Finetti, 1974). The canonicalcompletemarket
consistsof onesecuritypayingoutin eachstateof nature.
In generalthough,ary setof securitiegpossiblyincluding
conditionals)with a payof-by-statematrix of rank|2| — 1

is complete.

When one unit of eachsecurity paysout one dollar, the
equilibrium pricesin a securitiesmarket form a coherent
probability distribution. For example,p{41) = p{A12) 4

p<A1A2)' or p(AlAz) = p(AﬂAz)p(AZ). In fact, the equi-
librium pricescoincidewith the agents’risk-neutralprob-
abilities (2) for the available securities,which must be
in completeagreemen{Dreze, 1987; Nau & McCardle,
1991). Derivedformally in Section3.1, we simply sketch
the intuition here. Sincea risk-neutralagentbuys (A4,)

if pi4i) < Pr;(4;) (it simply maximizesexpectedpay-
off), then any agentbuys (A;) if p(4) < PriN(4;).

Similarly, the agentsellsif p{4:) > PriN(4;). If two

agentsh andi have differing risk neutralprobabilities—
thatis, Pri™ (4;) # Pri™(A;)—thenthereis aninter

mediateprice at which they are both willing to trade. It

follows that, at equilibrium, when by definition opportu-
nities for exchangehave beenexhaustedall agents’risk
neutralprobabilitiesagreeacrossavailablesecurities.Fur-

thermore sinceoffersto buy andsell mustmatch theequi-
librium pricesequaltheseconsensugrobabilities.

Thereare two, largely inseparablereasondor agentsto
tradein securities:to insureagainstrisk (“hedge”) andto
profit from perceved mispricings(“speculate”). Themore
averseto risk, the more the former considerationdom-
inatesan agents decisionmaking. On the other hand,
risk-neutrality—thdimit of diminishingrisk aversion—is
synorymouswith pure speculation. Thesetwo behaiors
are alignedwith the two centralroles of securitiesmar
kets in the theory of economicsunderuncertainty The
first, as mentioned,is to supportthe reallocationof risk.
The secondis to aggregate and disseminatenformation.
Agentsthat disagreeon the likelihood of statesmay seek
to exchangesecuritiesat pricesthat yield, accordingto

eachs subjectve viewpoint, an increasein expectedre-
turns.Moreover, eachagents privy, albeitimplicitly, tothe
evidencegatheredby otheragents(perhapsat greatcost)
via fluctuationdn price.

24 BAYESIAN NETWORKS

A joint probability distribution can often be represented
more compactly as a Bayesiannetwork (BN), or other
graphical model (Darroch, Lauritzen, & Speed, 1980).
Concisenesss achievedby exploiting conditionalindepen-
denceamongthe primary events. Let CI[A;, W, X]| be
shorthandor Pr(A;|W X) = Pr(A;|W), indicatingthat
A; is conditionally independenbf the set of events X,
given anothersetW. Considerthe event 4, € Z, with
predecessorpred(A;) = {41, A4s,..., Ap_1}. Suppose
that, glventheoutcomesof asubsepa(Ay) C pred(A4y)
of its predecessors—calledl;,’s parents—the event Ay, is
conditionallyindependentf all otherprecedingevents,or
CI[Ak,pa(Ag), pred(A4y) — pa(Ay)]. Thisstructurecan
bedepictedgraphicallyasa directedacyclicgraph(DAG):
eacheventis a nodein the graph,andthereis a directed
edgefrom nodeA; to nodeA,, if andonly if A; is aparent
of A;,. We alsoreferto A asthe child of A;. A DAG
hasno directedcyclesandthusdefinesa partialorderover
its vertices. We assumewithout loss of generalitythatthe
eventindicesare consistentwith this partial ordering;in
otherwords, if A; is a predecessoof A, thenj < k.
We canwrite thejoint probabilitydistributionin a (usually)
morecompactorm:

M
Pr(A; A, - H r(Ax|pa(Ag)).

For eachevent A;, we recorda conditionalprobability ta-
ble (CPT), which containsprobabilities Pr(A|pa(Ag))

for all possiblecombinationsof outcomesof eventsin

pa(Ag). Thus,it is possibleto implicitly representhe
full joint with O (M - 2max{a(k)}) probabilities insteadof

2M _ 1, whereq(k) = |pa(A)| is the numberof parents
of Ak.

A Markov independences a specialtype of conditionalin-
dependencéDarrochet al., 1980; Pearl,1988; Whittaker,
1990).ThenodeA; andthesetof nodesX C Z — A; are
Markov independentgivenanothersetiv C Z — X — A;,
if CI[A;,W,X]andA; UW U X = Z. RecallthatZ is
the setof all modeledevents.

A DAG is anindependencynap or anl-map, of a proba-
bility distribution Pr if every independengimplicit in the
graphholdswithin Pr (Pearl,1988). Note thata complete
graphis atrivial I-mapof ary distribution over Q.

A DAG is decomposablé thereis anedgebetweenevery
two nodesthat sharea commonchild (Chyu, 1991; Dar
rochetal., 1980;Pearl,1988; ShachterAndersen& Poh,



1991).Treesareasubsetf decomposablBAGs,sinceev-
ery nodehasat mostoneparent.Completegraphsarealso
decomposablsinceevery two nodesare connected.Any
BN canbe madedecomposablby reorientingsomeedges
and introducing new edgeswhere needed(Chyu, 1991;
Shachteret al., 1991). Thoughthe decomposableepre-
sentationcanbe exponentiallylargerthanthe original BN,
it canstill beexponentiallymorecompacthanthefull joint
distribution. Theindependenciesncodedn a decompos-
ableBN areall Markov independenciefPearl,1988).

3 EQUILIBRIUM IN A SECURITIES
MARKET

3.1 EQUILIBRIUM ASCONSENSUS

The standardormulationof competitive equilibrium (3) is
asa fixed point whereeachagents demandis optimal at
currentprices,andeachsecuritys pricebalancesaggrejate
demandIn this section,we examineanalternatie charac-
terizationof equilibrium,recognizedirst by Dreze(1987).

Agents’sfirst-orderconditionfor xzw is:

6U,(x) _ _
PEONP VA

where T = 3, (luea, —p®) ¥ is its payof in
statew, andl,¢ 4, is theindicatorfunctionthatequalsone
if w € Ay, andzerootherwise Applying the chainrule

3 Pri(@) (Loea, —p@) uf (1) = 0

andsolvingfor p{?, we find that:

EwEAj Pri(w)u} (’rgw))
Zweg Pr,-(w)u;. (T§w>)

In words,equilibrium canalsobe considereda fixed point
whereexchangesmongagentsnduceaconsensuenrisk-
neutralprobabilitiesacrossavailablesecuritiesandwhere
the security prices themseles match theseagreed-upon
values.

P = =P, (@)

3.2 COMPLETE MARKETS, COMPLETE
CONSENSUS, AND PARETO OPTIMALITY

As describedin Section2.3, a securitiesmarket is com-
pletewhenS = || — 1 andall securitiesarelinearly inde-
pendent In sucha market, equilibrium allocationsof risk

are Paretooptimal: ary gamble,contingenton any event
E C Q, thatis anacceptabl@urchasdor oneagentis not
anacceptablealefor ary other(Arrow, 1964).

A probabilitydistribution overQ hasdimensionality|Q|—1
(normalizedlik elihoodsfor the || states). Pricesof se-
curities in a completemarket constitute|2| — 1 linearly
independenequationsfor these|Q?| — 1 unknavns, and
thus defineuniqueprobabilitiesfor all statesv € (2, also
calledthe stateprices(Huang& Litzenbeger, 1988; Var-
ian, 1987). Denotetheseprobabilitiesas Prg(w), andlet
Pro(E) = ) g Pro(w) bethe price-probabilityof ary
eventE, perhapsotdirectly correspondingo anavailable
security

Theagents'risk-neutraldistributionsalsohave dimension-
ality |©2] — 1, subjectto the S constraintsdefinedby (4).

If themarketis completeijt follows thatPri™ is uniquely
determinedandequalsPr, for all i. Thatis, a complete
marketinducesacompeteconsensusnrisk-neutralproba-
bilities. This suggestanintuitive explanationof why equi-

librium allocationsareParetooptimal. All agentdehaeas

if they arerisk-neutral(payoff-maximizing)with identical
beliefs.In sucha situation,therearesimply no differences
of risk-preferencer opiniononwhichto trade.

If S < |Q| — 1, thenthe consensusn risk-neutralprob-
abilities is generallyincomplete. Whenever Pri™ (w) #

PriN(w) for ary w, thereexists an acceptablesxchange
betweenagentsh andi, thoughperhapsot supportedby

the S availablesecurities.An equilibrium allocationin an
incompletemarketis notnecessarilyparetooptimal ! Butit

canbe,dependingn the particularbelief structuref the
agentsCall amarket opemationally completsf its compet-
itive equilibrium (x, p) is Paretooptimal (with respecto

the agentsnvolved), evenif the market containslessthan
|| — 1 securities As adegeneratexample anemptymar

ketis operationallycompletefor aneconomyof completely
identicalagents.Although sucha market doesnot support
all conceivabldradesjt doessupportall acceptabldrades
amongthegivenagents.

4 STRUCTURED MARKETS: AN
ANALOGY TO BAYESIAN
NETWORKS

Achieving completenesis, practicallyspeakingall butim-
possibletherequirednumberof securities—eponentiain
thenumberof primary events—issimply too huge.

In attemptingto represenprobability distributionsover 2,
researcherf uncertainreasoningarefacedwith ananal-
ogouscombinatorialexplosion. The typical solutionis to
work with the factoredevent space,ratherthan the state

!Allocationsarealwaysefficient with respecto availablese-
curities,but not necessarilyith respecto all states.



spaceandto exploit ary independencieamongeventsus-
ing graphicalmodels.

Continuing the analogy securitiesmarkets can be struc-
turedaccordingo the directedacyclic graphD of ary BN.

Simplyintroduceoneconditionalsecurity(A ;|pa(A;)) for

every conditional probability Pr(A;|pa(A;)) in the net-
work. For eachevent 4; with ¢(j) = |pa(A;)| parents,
this adds27() securities,one for eachpossiblecombina-
tion of outcomesof eventsin pa(4;). Call sucha market
D-structured Imaginefor themomentthat D is fully con-
nected(thatis, no independenciearerepresented)Then
a D-structuredmarket containszjj‘i1 201 =2M _1 =

|| — 1 linearly independensecurities,andis thus com-
plete.

The benefitof a BN representationand likewise a struc-

turedmarket, obtainswhenD is lessthanfully connected,
andthusthe market containslessthan 2| — 1 securities.
What can be said in this case? Certainly dependingon

thebeliefsandutilities of theagentsjnefficientallocations
are possible. Nonethelessunder circumstancesxplored

below, the smallermarket may suffice for operationatom-

pleteness.

5 COMPACT MARKETSI

51 CONSENSUSON RISK-NEUTRAL
INDEPENDENCIES

Call a D-structuredmarket a risk-neutal independency
market, or anRNI-marlet, if, in equilibrium, D is anl-map
of Pri*™ for all agentsi. Thatis, all agents’risk-neutral
distributions agreewith the independenciegncodedin
the market’s structure. Paralleling our notation for true
conditionalindependencdgt CT;™N [A4;, W, X] denotethe
risk-neutralconditionalindependenc®ri™ (4;|[WX) =
PriN(A;|W).
Proposition 1 At

equilibrium in an RNI-marlet,

PriN(w) = PriN(w) for all agentsh,i and all states
w € Q.
Proof.  The market contains Y77, 219 securities,

imposing an equal number of constraints on every
agents risk-neutral distribution via (4). For each
event, I-mamess further imposes 2¢() (27-1-4() _
1) conditional independenceconstraints of the form
CIFN[A;,pa(4;), pred(4;) — pa(A4,)], for all combina-
tionsof outcomesf eventsin pa(A;) andall butonecom-
binationof outcomesf eventsin pred(A4;) —pa(4;) (the
remainingoneis implied by theothers).Theneveryagents
risk-neutraldistributionis subjectto

M
qu(j) + 2¢(9) (2j—1—q(j) -1)

i=1

M
= Y 2t =2M_1=|0|-1
=1

identical, linearly independentconstraints. Therefore

PriN = Pri™ for all h,i. O

In an RNI-market define the state prices Pro(w) =
PriN(w) asthe uniqueprobabilitiesover Q2 that are con-
sistentwith the pricesof availablesecuritiesandtheinde-
pendenciesf D. Thefollowing corollary establisheshat
equilibrium pricesfor ary of the |2] — 1 — S “missing”
securitiesarealsoderivablefrom Prg.

Corollary 2 Let(p{", ..., p!5)) betheequilibriumprices
in an RNI-marlet Introducea new security (E). Then
(p1,...,p'%) Pro(E)) are equilibrium pricesin the ex-
pandedmarket.

Proof. Beforethe extra securityis introduced,all agents’
risk-neutralprobabilitiesPri™ (E) alreadyequalPry(E),
without buying or selling any quantity of the security It
follows that, with the additionalsecurity the equilibrium
condition (4) is satisfiedwith z\® = 0 for all i, p(& =
Pro(E), andall otherpricesunchangedn

The number of securites in  an RNI-market
O (M -2max{aD}), can be exponentially smaller than
the 2M — 1 requiredfor traditional completeness.The
following corollary showvs that the more compactmarket
supportsallocationshatareequallyefficient.

Corollary 3 EveryRNI-marletis opemationally complete
Thatis, the equilibriumallocationsx and statepricesPrg
in an RNI-marlet constitutean equilibrium in a (truly)
completemarket composeaf the sameagents.

Proof. By repeatedapplicationof Corollary 2, we canadd
the || — 1 — S securitiesnecessaryo completethe mar
ket? For eachnew security a price consistentwith Prg,
coupledwith zerodemandrom all agentssatisfieg4). All
completemarkets,regardles®f structure supporthesame
equilibrium allocationsand stateprices(Huang& Litzen-
bemer, 1988; Mas-Colellet al., 1995; Varian, 1987). O

Proposition1 and its corollaries are equilibrium results
only. We sketchhereonepossibleprocedurdor reacing
agreemenbn the market structure® Begin with securities
in only the M events: (4,),...,{An). If ary agentsde-
mandfor (Ax|A;) (forary j < k) atpricept*’ isnonzero,
thenit createsanew marketin (A;|A4;). If, atsomefuture

2A naturalsetto addarethe Z;‘il 290 (27-1=9()) _ 1) se-
curitiesof theform (A;|pred(4;)), for all eventsA;, all com-
binationsof outcome®f pa(A;), andall but onecombinationof
outcomesf pred(A4;) — pa(4;).

3This procedures similarto Geigers (1990)protocolfor elic-
iting independencstructuresrom experts.



time, theagenthaszerodemandor its new security thenit
may retractthe security An additionalconditionfor equi-
librium is that no agentdesiresto createor withdraw arny
markets. Then,in equilibrium, it shouldbethe casethatall
agents’risk-neutralindependencieagreewith the market
structureandthatthemarketis operationalljcomplete We
might wantto adda transactiorcostfor openingnev mar
kets,sothatequilibriumonly ensureghatrisksarehedged
upto athresholdcost.

52 COMPUTATIONAL COMPLEXITY OF
ARBITRAGE

Imagine that, after equilibrium is reached in an
RNI-market, aredundansecurityis introducedsay(A ).

The equilibrium price of (A,,) is already determined
(Corollary2): it mustequalPro(Ass) = Pri™ (Aar). Fur

thermorejf thecurrentpricedoesnotequalPry(A,s), then
the marketis not in equilibrium,andarbitrageis possible.
For example,if p{4™) < Pry(Ays), thenan outsideob-
sener O could purchaseit at the going price and sell it

to any of the agentsat price p* suchthatp(4m) < p* <

PriN(4,) = Pro(Ap). Although O doesnot have di-

rectaccesso Pro(Ayxr), it is uniquely computablegiven
theotherpricesandtheindependencstructureof D.

If O canfind anarbitrageopportunityby correctlypricing
theredundansecurity thenO canperformBayesiarinfer-
ence whichis #P-completdCooper 1990).

6 COMPACT MARKETSII: CONSENSUS
ON TRUE INDEPENDENCIES

Equilibriumagreemenbnrisk-neutraindependenciesay
seemasomevhatstrangecondition,especiallyconsidering
that the Prf‘N are changingas transactionooccur Some
authorsargue that, since agentsappearto act according
to PriN andstandarcelicitation techniqueseveal Prit™,

risk-neutral probabilitiesare in fact no less “real” than
true probabilities(Kadane& Winkler, 1988; Nau & Mc-

Cardle, 1991). However, while it seemsreasonabldhat
agentswvould have trueindependenciem common(Pearl,
1993; Smith, 1990), it is harderto justify why their risk-

neutralindependencies/ould coincide. This sectionde-

velopsa theory of compactmarkets basedon consensus

ontrueindependenciedf, despiteary quantitatve differ-

encesbetweerPr; andPri™, anagents trueindependen-
cieswere always manifestasrisk-neutralindependencies,

thenresultsconcerningRNI-markets would carry over un-
changed.Section6.1 demonstratethat this is indeedthe

casefor a subclasof agentsanda subsetof independen-

cies.Section6.2 discussesiow known limitationsof belief
aggreyationproceduresestrictthe possibility of obtaining
compactmarketsundermoregenerakircumstances.

6.1 CONSENSUSON MARKOV
INDEPENDENCIES

A commonlyassumedisk-averseutility form is exponen-
tial utility: w;(u) = —e~¢#. This utility form is synory-

mouswith constant@absoluterisk aversion (CARA), where
¢; isagent’scoeficientof risk aversion,or 1/¢; itsrisk tol-

erance As theagentswealthincreasesits maiginal utility

for unit dollars decreasegsinceit is risk-averse),but the
amountof its aversionto risk remainsconstanttc;.

In this section,we shaw that, in economiescomposedf
agentsawith CARA, marketsstructuredaccordingo agreed
upon(true) Markov independencieareoperationallycom-
plete. Defineanindependencynarket, or an l-market, as
a D-structuredmarket suchthat D is an I-map of Pr; for
all agentg (i.e.,all agentstruedistributionsagreewith the
independencieis D). An I-marketis decomposabli D is
decomposable—erynodes parentsarefully connected.

LetZ = {A1,...,Au} bethesetof all events,4; € Z a
particularevent,andW C Z — A;andX = Z - W — 4;
subsetof events. We areinterestedn whetheragenti’'s
Markov independencie€T;[A;, W, X] arereflectedas a
risk-neutralindependencie€I;™ [4;, W, X], andarethus
obsenable. For brevity, we dropthe subscript whenonly
oneagentis underconsideration.

Proposition 4

o (TATX) gy (r AW
CI[AJ,W,X]& (UIET(A]-WX); = u,ET(AJ- )':)3)

= CI*N[4;, W, X], (5)
whele the secondpreconditionmusthold for all possible

joint outcomef theeventsin W, andall pairs (X, X) of
differentjoint outcome®f eventsin X.

Pr oof.

o (T(,«fjWX)) o (T(A’J-WD)
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The secondpreconditionin (5) saysthattheratio of marmg-
inal utility in stateswhere A; doesnot occurto mamgi-
nal utility in stateswhere A; doesoccur cannotdepend
of the outcomesof eventsin X. This is true (and in-
deedPr®™N = Pr) if the agents maminal utility ' is con-
stantacrossstates. This holdsif the agentis risk neutral,
andholdsapproximatehyif utility is state-independerind
YT{wi) & Y{w) But this approximatioris not realisticfor
anagentengagedn tradingsecurities sincea centralrole
of the market is preciselyto enablethe transferof wealth
acrossstates.

Let Y{4i"W) bethe agents payof from all securitiesthat
dependonly the outcomesof eventsin A4; U W. Exam-
plesare(A;), (4;W), and(A;|W), whichreturnthesame
dollar amountregardlessof the realizationsof eventsin
X = Z - W — A;. Similarly, let T{WX) pe the payof
from securitieghatdo notdependon 4;.

Supposethat the agentexhibits CARA, and that its pay-
offs are separableaccordingto Y(4iWX) — Y{4;W) 4
TWX) _ (W) Separabilityessentiallymeansthat ary
of the agents securitieqor prior stales)whosepayof de-
pendson A; cannotalsodependon eventsin X. In this
case,

u' (T(“{iwx)) _ u' (T(JJ'W)-FT(WX)—T(W))
W (TR = (XA (W) Sy (W) )
o—ex ATV _ex(WX) ox (W)
o= AW oy (WX) ox (W)
e—c'r(AjW)e—cT(W}z)ecT(W)

[

- c —ex$AWY o (WX) (W)
o (T(,&jW)+T(W)?)_T<W)) o' (T(A’jwir))

w (YA x (W) _xwy) T uI(TMJ‘W’?))

Thus the constrainton utility in (5) is satisfied,and ary
Markov independencieareobsenable.

We arenow in a positionto derive the main resultof this
section.

Proposition 5 Whenall agentshave CARA,every decom-
posablel-marketis an RNI-marlet

Proof. Let W; bethe setof directparentsanddirectchil-
drenof eventA;, and.X; all otherevents.Fromdecompos-
ability andl-mamesswe caninfer that

1. CI;[A;, W}, X;] for all agents andeventsy,

2. noneof thesecuritieg 4;|pa(A4;)) thatarecontingent
on A; dependon X;, and

3. noneof the securities(A;|pa(Ax)) suchthat A; €
pa(A;) thatareconditionalon A; dependon X ;.

Items 2 and 3 ensureseparability of payofs from the
available securities (we assumethat ary prior stales

are also separable). Then, invoking Proposition 4,
CIFN[A;,W;, X,] for all agentsi andevents;j. As are-
sult, D is anl-mapof every Pri™ regardlesf allocations
or prices,includingthoseat equilibrium. O

Propositionl andCorollaries2 and3 areimmediatelyap-
plicable. In particulay for agentswith CARA, every de-
composablé-marketis operationallycomplete.

6.2 INHERENT LIMITATIONS

One might wonderwhethercompactl-markets are possi-
ble for larger classef agentsor independencieslt can
be shawvn via countergamplethat, even when all agents
have CARA, a market conformingto agreed-uporfpossi-
bly non-Markov) independenciewill notalwaysbe oper
ationally complete. Moreover, whenall agentshave log-
arithmic utility for money (anothercommonly assumed
utility form), even a market conformingto agreed-upon
Markov independenciesvill not always be operationally
complete.

Although we do not have a formal statementof impos-
sibility, resultsfrom statisticalbelief aggreyation suggest
that agreemenbn true independenciesvill not be suffi-
cientin generalto yield compactand operationallycom-
plete markets. The statepricesPrg in a securitiesmarlket
areafunctionof all theagents’beliefs(andtheir utilities),
and as suchessentiallyconstitutea measureof aggrejate
belief. Many researchersave studiedbelief aggreyation
functions(Genest& Zidek, 1986),andseveralimpossibil-
ity theoremseverelyrestricttheclassof functionsthatpre-
seneunanimoushheldindependencieGenes& Wagner
1987),even whenrestrictedto independencieamongthe
primary events(Pennock& Wellman, 1999). The aggre-
gation“function” of a securitiesmarket is of coursesub-
ject to the samelimitations. We suspectthat, for mary
configurationsof agents,markets structuredaccordingto
unanimously-heldrueindependenciewill notyield prov-
ably optimal allocationsof risk. Neverthelessit may well
bethecasethatstructurednarketscanyield approximately
optimal allocationsover a wider rangeof agentpopula-
tions.

7 CONCLUSIONS

Rationalrisk-averseagentswill seekwaysto mitigatethe
dangersinherentin an uncertainworld by reducingtheir
exposureto risk. Wheneer two agentsexhibit divergent
tolerancedor risk (e.g.,aninsuranceompaty andahome-
owner), or disagreeon the likelihood of world outcomes
(e.g.,abettoron St. Louis to win SuperBowl XXXIV and
a bettor on Tennessee)there may be an opportunity for
anexchangeof state-contingentealth—essentiallg port-
folio of securities—that both agentsdeembeneficial. To
guarante¢hatall desirable=xchange®f risk aresupported,



amarket mustbe completeor containat least2™ — 1 lin-
earlyindependensecuritiesywhereM isthenumberof rel-
evantuncertainevents.Clearly, this numberof securitieds
prohibitivein evenmodestlycomple« domains.

In this paper we shoved thatthe sameprinciplesusedto

succinctlyrepresenjoint probability distributionscanaid

in reducingthe requirednumberof securities. We illus-

tratedhow marketscanbestructuredanalogouslyo Bayes-
iannetworks. We derivedtwo conditionsunderwhichcom-
pactmarkets—insomecaseswith exponentiallyfewer se-
curitiesthancompletemarkets—carstill supportall desir

ableexchange®f risk. The mostgeneralconditionis that
all agents'risk-neutralindependencieagreewith theinde-
pendenciegncodedn the market'’s structure.For popula-
tionsof agentswith constantabsoluterisk aversion,agree-
menton Markov independencieis suficient.

We planto evaluateempiricallywhetherstructurednarkets
canyield efficiency gainsevenwhenagentsdo not meetall

of thesetheoreticalsufficiency requirements As a poten-
tial future application,onemight imaginestructuringa set
of derivativesso asto increaseopportunitiesfor agentsto

hedgetheir risks, while at the sametime keepingthe num-
berof financialinstrumentgequiredat a minimum.
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