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ABSTRACT
Credit networks are an abstraction for modeling trust between agents
in a network. Agents who do not directly trust each other can trans-
act through exchange of IOUs (obligations) along a chain of trust
in the network. Credit networks are robust to intrusion, canenable
transactions between strangers in exchange economies, andhave
the liquidity to support a high rate of transactions. We study the
formation of such networks when agents strategically decide how
much credit to extend each other. When each agent trusts a fixed
set of other agents, and transacts directly only with those it trusts,
the formation game is a potential game and all Nash equilibria are
social optima. Moreover, the Nash equilibria of this game are equiv-
alent in a very strong sense: the sequences of transactions that can
be supported from each equilibrium credit network are identical.
When we allow transactions over longer paths, the game may not
admit a Nash equilibrium, and even when it does, the price of anar-
chy may be unbounded. Hence, we study two special cases. First,
when agents have a shared belief about the trustworthiness of each
agent, the networks formed in equilibrium have a star-like structure.
Though the price of anarchy is unbounded, myopic best response
quickly converges to a social optimum. Similar star-like structures
are found in equilibria of heuristic strategies found via simulation.
In addition, we simulate a second case where agents may have vary-
ing information about each others’ trustworthiness based on their
distance in a social network. Empirical game analysis of these sce-
narios suggests that star structures arise only when defaults are rela-
tively rare, and otherwise, credit tends to be issued over short social
distances conforming to the locality of information.
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1. INTRODUCTION
The study ofstrategic network formationseeks to understand the

emergent behavior and properties of a network when self-interested
agents establish connections to other agents based on theirlocal in-
formation. In general, establishing a connection incurs a cost but
also yields some benefit to agents connected through that edge. The
agents are deemed to be utility-maximizing, that is, they make de-
cisions in order to maximize the difference between their total ben-
efit and their total cost. This problem has been studied in many
different settings [11, 2, 8, 5, 1]. One can ask interesting questions
about the emergent properties of the networks formed in eachset-
ting: What network topologies are feasible in equilibrium?How
do equilibrium networks differ from socially optimal ones?How
does this depend upon the cost of forming an edge and the benefit
derived from having a connection? If there are multiple equilibria,
can agents select among them through some kind of iterated better-
response dynamics?

This paper is an investigation into some of these questions in
the context ofcredit networks, an abstraction for modeling trust
among autonomous agents. A credit network represents trustrela-
tionships through a directed graph with edge capacities. Nodes in
this graph correspond to agents, and edges correspond to credit re-
lationships between them. An edge of capacityc from nodeu to
nodev indicates that agentu extendsc units of credit to agentv, or
equivalently,u is committed to accept IOUs (obligations) issued by
v up to valuec. The capacity of this edge can be viewed as a mea-
sure ofu’s trust inv. Nodes pay for goods and services by issuing
their own IOUs, instead of using a common currency. Credit com-
mitments between trusting nodes also enable remote transactions,
as illustrated in Fig. 1. Say nodew wants to buy a good worthp
units from nodeu. Nodesu andw can transact—even thoughu
does not directly trustw—via the trusted intermediaryv. Assum-
ing p ≤ min{c1, c2}, the payment proceeds byw issuing an IOU
to v worth p units, andv issuing an IOU tou worth p units. If,
however,p > min{c1, c2}, the transaction fails. As a result of a
successful transaction, the credit capacitiescuv andcvw decrease
by p, representing the remaining credit commitments. In addition,
the capacitiescvu andcwv both increase top from zero, sincev and
w will both accept the return of their own IOUs as payment. Thus
arbitrary payments can be routed through a credit network bypass-
ing IOUs along a chain of trusting agents, obviating the needfor
a common currency. Observe that routing payments in credit net-
works is identical to routing residual flows in general flow networks.
Also note that payment flows in the opposite direction of credit, so
a payment merely results in a redistribution of credit: buyers ex-
pend credit and sellers gain it while intermediaries exchange credit
between their neighbors, but the total credit in the networkremains
unchanged.
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Figure 1: Updating credit to process a transaction betweenu andw
worthp units.

The credit network model was introduced independently by [7],
[9], and [13] as a mechanism for enabling transactions amongun-
trusting agents in a network. This model is particularly well-suited
for transactions in exchange economies such as P2P networkswhere
it has been shown to improve inefficiencies resulting from asyn-
chronous demand and bilateral trading [14]. It has been usedto
thwart spam in e-mail and content-sharing systems such as YouTube
[16]. It can also be used in settings such as packet routing inmobile
ad-hoc networks and combating spam in viral marketing over social
networks. There is a large body of work in economics and sociol-
ogy on social capital and favor exchanges in networks [10]. This
model not only provides a rigorous way of keeping track of favors
owed to and by each individual in a network, but also facilitates
exchange of favors, via trusted intermediaries, between individuals
who do not know each other directly.

Prior research shows that liquidity (ability to route payments)
in many credit network topologies is comparable to that in equiva-
lent centralized currency systems [6]. Whereas that work takes the
credit network to be exogenously defined, here we address theques-
tion of how credit networks may be formed in the first place. We
endogenize network formation by explicitly modeling the decision
by each agent to issue credit to others. Issuing credit entails risk (a
counterparty may violate the trust extended), as well as benefits (it
increases the probability that profitable transactions maybe com-
pleted). A natural question is whether agents who rationally weigh
these risks and benefits will actually form viable credit networks.
Network formation in the presence of risk was recently studied by
[4] in a model motivated by financial contagion and epidemic dis-
eases. In their setting, nodes derive utility only from direct edges,
whereas risk is contagious (i.e., failure of distant nodes is also a
source of risk). Our model flips this: nodes derive benefit from
transactions along direct as well as multi-hop paths, whereas only
direct edges are sources of risk.

1.1 Our Setting
In our model, each agent has acredit budgetrepresenting the to-

tal credit that agent can extend others. Agents play a one-shot game
where they determine how much credit to extend other agents,and
then engage in repeated probabilistic transactions over the formed
credit network. Agents derive utility from successful transactions.
Extending credit to other agents increases transaction success prob-
ability, thus contributing to utility. On the other hand, when agentu
extends credit to agentv, u risks a potential loss of utility resulting
from violation of the trust it placed inv. Thus, an agent’s net utility
is its total utility from successful transactions minus theutility loss
from extending credit to untrustworthy agents.

We analyze the formation of credit networks under various mod-
els of risk. We start with a model ofdichotomous risk: agents are
embedded in asocial networkrepresented by anundirectedgraph.

Agents trust their neighbors in the social network and may extend
credit to them. However, they associate a very high loss of utility
with extending credit to non-neighbors, and consequently,never ex-
tend credit to them. This setting captures situations illustrated by
the following examples where directly transacting with a stranger
may have grave consequences.

• During a disease epidemic within a human population, high-
risk groups will limit their interactions to those who belong
to similar social circles. Evidence of this has been found, for
example, in the setting of HIV/AIDS [12, 3].

• Users trying to circumvent Internet censorship and evade net-
work surveillance in repressive regimes make use of Internet
proxies [15]. If caught, penalties may be severe. Thus, users
rely on their friends and acquaintances to distribute proxy
addresses.

• Members of covert organizations face the prospect of severe
harm at the hands of the enemy if their identity is compro-
mised. As a result, they may rely on longstanding relation-
ships and assets built over time to conduct their business.

We also study a model ofglobal risk, which represents the other
extreme with respect to the dichotomous risk model. In this model,
each node has a publicly known risk of default. This corresponds
to situations involving small, densely interacting socialgroups, or
where there are organizations such as credit-reporting agents that
systematically gather and disseminate relevant risk information.

Finally, we study a model ofgraded riskthat helps bridge the
gap between global and dichotomous risk. Under this model, each
agent has a private default probability. Agents receive noisy signals
about each other’s probability of defaulting, and these signals are
more informative for neighbors in the social network.

1.2 Results
Dichotomous RiskUnder dichotomous risk, when we allow only

bilateral transactions (i.e., transactions only between adjacent nodes
in the social network, and payments routed only along the direct
edge between nodes), we show that the formation game is a poten-
tial game (Theorem 3.1). This implies that best-response dynamics
always converge to a Nash equilibrium1. Moreover, for a large, nat-
ural class of transaction size distributions, we show that agents’ util-
ities are concave in their credit allocations. This allows us to prove
that every Nash equilibrium of the game maximizes social welfare
(Theorem 3.4). More interestingly, we show that the Nash equilib-
ria are equivalent in a much stronger sense: any two Nash equilibria
arecycle-reachablefrom each other (Theorem 3.6), which means
that it is possible to transform one equilibrium into another by rout-
ing a sequence of payments from a node to itself along a feasible
path. The significance of this structural property follows from [6]:
for any two Nash equilibrias ands′ of the game, if an arbitrary
sequence of transactions is feasible starting froms, that sequence
is also feasible starting froms′.

With non-bilateral transactions, the game becomes significantly
less well-behaved: the game may not admit a Nash equilibrium
(Theorem 3.8), and even when it does, the price of anarchy in this
setting can be unbounded (Theorem 3.9).

Global Risk Under global risk, we analyze the price of anarchy
and the structure of equilibria when each agent is limited toextend
credit to at most one other agent. We prove if we disallow the empty
network as an outcome, the price of anarchy of the formation game

1In this paper, the termNash Equilibriumalways refers to a pure
Nash equilibrium, except when we explicitly consider mixedstrat-
egy equilibria of simulated games in Section 4.2.



is unbounded (Theorem 4.4), even though all Nash equilibriahave
a star-like structure (Theorem 4.3). Instead we focus on thestruc-
ture of equilibria under two simple dynamics: sequential arrival
and myopic best response. When nodes arrive sequentially and cre-
ate a single link, we show that a nodeu always extends credit to
either the nodev that arrived immediately beforeu or to the node
thatv extends credit to (Theorem 4.6). Thus the resulting network
has acomb-likestructure. Under myopic best response, nodes ex-
tend their entire credit budget to the node that has the lowest risk
of default. If the default risks are unique, this results in astar-like
network structure which is also the optimal structure in terms of so-
cial welfare (Theorem 4.5). Thus, even though the price of anarchy
can be unbounded, nodes can easily find the optimal network using
myopic best response.

Simulations We use empirical game simulation to study a more
general formulation of the global risk model, finding that non-empty
equilibrium networks tend to have a centralized, star-likestructure
due to use of default probability as a primary credit-issuing crite-
rion. We also analyze several graded risk settings, and find that
centralized networks only arise when defaults are relatively rare,
and otherwise, credit links tend to be issued over short social dis-
tances conforming to the locality of information.

2. MODEL AND DEFINITIONS
Let V denote the set ofn agents. Each agentu ∈ V has a

budgetBu ≥ 0 representing the total credit thatu can extend to
other agents inV . Agents play a one-shot game where they choose
credit allocations to form an initial networks. Agents represent
nodes of the formed network. An edge from nodeu to nodev of
capacitycuv(s) represents the credit extended by agentu to agent
v in the networks. A strategy for agentu is a set offeasiblecredit
allocations{cuv(s), v ∈ V : cuv(s) ≥ 0 and

P

v∈V
cuv(s) ≤

Bu}.

2.1 Transaction Model
Once a networks is formed, agents engage in repeated proba-

bilistic transactions with each other. At each time stept = 1, 2, . . . ,
a pair of transacting agents〈u, v〉, with u being the payer (buyer)
andv the payee (seller), is chosen with probabilityλuv. The trans-
action rate matrixΛ = {λuv : u, v ∈ V } is public, and sat-
isfies the following properties: (i)λuu = 0, (ii) λuv ≥ 0, and
(iii)

P

u,v
λuv = 1.

Suppose agents〈u, v〉 are chosen to transact at timet. Then the
transaction size,xt

uv, betweenu and v is drawn from atransac-
tion size distributionover [0,∞) with a probability density func-
tion (pdf)guv(·) and a corresponding cumulative distribution func-
tion (cdf) Guv(·). We assume that the pdfsguv(·) are public. Let
G := {guv(·) : u, v ∈ V } be the pdf matrix.

Given a transaction sizex, a feasible pathin the networks from
nodev to nodeu is a set of directed edgesP = {(v, u1), (u1, u2), . . . ,
(uk−1, uk), (uk, u)} such that for all(w, y) ∈ P , cwy(s) ≥ x.
We route payments along the shortest feasible path in the network.
Let Pt

vu be the shortest feasible path in the credit network from
v to u at time t. A successful transaction of sizext

uv results in
a change of credit capacities along edges inPt

vu as follows. Let
st := {cuv(st) : u, v ∈ V } denote the state of the networks at
time t = 0, 1, 2, . . . , wheres0 = s. Then, forw, y ∈ V and for
t > 0,

cwy(st) =

8

<

:

cwy(st−1) − xt
uv, if (w, y) ∈ Pt−1

vu

cwy(st−1) + xt
uv, if (y,w) ∈ Pt−1

vu

cwy(st−1), otherwise

So, in order for a paymentxt
uv from u to v to succeed, there must

exist a feasible path in the credit networkfrom the payeev to the
payeru. If no such path exists, the transaction fails, in which case
all credit capacities remain unchanged. Thus, for allt > 0, and for
all u, v ∈ V, cuv(st) + cvu(st) = cuv(s) + cvu(s).

The repeated probabilistic transactions induce a Markov chain
over the states of the network, which we denote byM(s, Λ,G). A
transaction regimeis defined as the tuple〈Λ,G〉. We say a transac-
tion regime〈Λ, G〉 is symmetricif the transaction rate matrixΛ is
symmetric: for all nodesu, v ∈ V, λuv = λvu, and the transaction
size pdfs are symmetric: for allu, v ∈ V, guv(·) = gvu(·).

We are interested in the success probabilities of transactions in
the steady-state of this Markov chain, which are difficult tochar-
acterize for arbitrary networks and transaction regimes. However,
we can do so in some simple cases, including theunit transaction
regime.

DEFINITION 2.1. A unit transaction regimeover credit network
s is a transaction regime〈Λ,G〉 where, for allu, v ∈ V and for all
t > 0, the transaction sizext

uv = 1, the transaction rate matrixΛ
is symmetric and the Markov chainM(s, Λ,G) is ergodic.

When the networks is acyclic (ignoring directionality), [6] charac-
terize the steady-state success probabilities under a unittransaction
regime.

LEMMA 2.1 ([6]). Consider a credit networks. Assume that
s is acyclic if we ignore the directions of the edges ins. LetPuv

be the set of (undirected) edges along the path between nodesu
andv. Then, in a unit transaction regime overs, the steady-state
transaction success probability,fuv(s), between two nodesu, v ∈
V is given by

fuv(s) = λuv

Y

e=(w,y)∈Puv

⌊cwy(s)⌋ + ⌊cyw(s)⌋

⌊cwy(s)⌋ + ⌊cyw(s)⌋ + 1

2.2 Utility
Agents choose credit allocations to maximize their utility. Suc-

cessful transactions contribute to agents’ utility, but agents risk
loss of utility when they extend credit to potentially untrustworthy
agents. We model this risk in several ways, but denote the expected
loss of utility tou associated with the prospect of default byv by
∆uv(s), with the constraints that∆uv(s) ≥ 0 and∆uv(s) > 0
only if cuv(s) > 0. Let fuv(s) be the steady-state success proba-
bility of the transactions fromu to v when the initial network iss.
Then, the total utility of an agentu when the initial network iss is
given by

Uu(s) = γ
X

w∈V

fuw(s) −
X

v∈V :cuv(s)>0

∆uv(s) (1)

whereγ is a constant that converts transaction success probabil-
ity into equivalent utility units. The overallsocial welfarein net-
work s is simply the sum of utilities of all nodes ins: U(s) =
P

u∈V
Uu(s).

2.3 Risk Model
In order to model variation in∆uv(s), we assume that the agents

are embedded in an exogenously-definedsocial networkrepresented
by a simple undirected graphH = (V, E). The social network
H influences the how∆uv(s) for an agentu varies across agents
v ∈ V . We consider three specific models of how risk changes as
a function of distance betweenu andv in H .

Dichotomous Risk. In this model, an agentu partitions the
set of agentsV into two sets usingH : neighbors inH and non-
neighbors inH . For any networks, agentu estimates risk exposure



to be:

∆uv(s) =



0, if (u, v) ∈ E
∞, otherwise

(2)

This model assumes agents are willing to interact only with their
neighbors inH . For any credit networks formed under this model,
cuv(s) = 0 if (u, v) /∈ E.

Global Risk. In this model, we assume that each agentv has
a default probabilityδv ∈ (0, 1] which is public. Ifv defaults, a
nodeu that extended creditcuv(s) to v losescuv(s) units. Thus,
∆uv(s) = δvcuv(s).

Graded Risk. Here, as in the Global Risk model, each agent
v has default probabilityδv, but this information is not publicly
known. Instead, each agentu receives a signalδuv about the default
probability of each other agentv. These signals are decreasingly
informative with distance inH , so agents know much more about
the default probabilities of their neighbors in the social network
than about distant nodes. In our simulations, we implement this by
drawing agents’ default probabilities from a beta distribution: δv ∼
Beta(α, β). Agent u then receives a signal in the form of some
number of samplesSuv drawn from the binomial distribution onδv ,
whereSuv decreases exponentially with social network distance.

3. NETWORK FORMATION UNDER
DICHOTOMOUS RISK

Recall that under dichotomous risk,∆uv(s) is defined by (2), as
a result nodes only extend credit to their neighbors inH .

3.1 Symmetric Bilateral Transactions
We call a transaction between nodesu andv bilateral if (u, v) ∈

E and the payment is routed along the edge(u, v). We allow only
bilateral transactions: if a payment between adjacent nodes u and
v cannot be routed along the direct edge(u, v), we fail the transac-
tion. As a result, if(u, v) /∈ E, the steady-state success probabil-
ity fuv(s) = fvu(s) = 0. Moreover, the steady-state transaction
success probabilities along an edgee = (u, v) in a networks are
governed only by the credit allocations,cuv(s), cvu(s), alonge in
s. We also assume that the transaction regime〈Λ,G〉 is symmetric
and thatλuv > 0 if (u, v) ∈ E. As a result, for all nodesu andv,
fuv(s) = fvu(s).

In our analysis of the symmetric bilateral transaction regime, for
an edgee = (u, v) ∈ E, we will useλe, ge(·), Ge(·) andfe(·) to
denoteλuv, guv(·), Guv(·), andfuv(·), respectively.

We first show that in this setting, the network formation gameis
a potential game.

THEOREM 3.1. The network formation game under a symmet-
ric bilateral transaction regime is a potential game.

PROOF. Consider the functionΦ(s) defined as

Φ(s) :=
U(s)

2
=

1

2

X

u∈V

Uu(s) =
γ

2

X

u∈V

X

v∈V

fuv(s)

Since we are in a symmetric bilateral transaction regime,fuv(s) =
fvu(s) for all (u, v) ∈ E, andfuv(s) = 0 if (u, v) /∈ E. There-
fore,

X

u∈V

X

v∈V

fuv(s) = 2
X

e∈E

fe(s)

This impliesΦ(s) = γ
P

e∈E
fe(s). We will show thatΦ(s) is a

potential function. Fix a nodeu ∈ V . Consider a networks′ which
differs from s only in the credit allocation ofu. Formally, for all

w, y ∈ V ,

cwy(s′) =



cwy(s), if w 6= u
c′wy , if w = u and(u, y) ∈ E

where{c′uy : (u, y) ∈ E} is any feasible allocation ofu’s credit.
Let Eu ⊆ E be the set of edges incident uponu in E. Note that
for all e′ = (u′, v′) /∈ Eu, cu′v′(s) = cu′v′(s′). As a result,
fe′(s) = fe′(s

′). It follows that

Φ(s) − Φ(s′) = γ
X

e∈Eu

`

fe(s) − fe(s
′)

´

= Uu(s) − Uu(s′)

Thus the network formation game is a potential game withΦ(s) as
the potential function.

Theorem 3.1 implies that in this setting, a Nash equilibriumal-
ways exists, best-response dynamics always converge to a Nash
equilibrium, and finally, because the potential function isgiven by
Φ(s) = U(s)/2, the price of stability is 1. Next we will show that
for a large, natural class of transaction size distributions, agents’
utilities are concave, and consequently, the price of anarchy is also
1, i.e., every Nash equilibrium of the formation game maximizes
social welfare.

3.1.1 Nash Equilibria Maximize Social Welfare
Consider an edgee = (u, v) ∈ E. Assume thatge(·) has sup-

port over[0,∞). Also, letGe(·) be twice differentiable. First we
derive an expression forfe(s) in terms of the credit allocations
cuv(s) andcvu(s) along edgee.

LEMMA 3.2. Consider a credit networks. For nodesu, v ∈ V
such thate = (u, v) ∈ E, the steady-state transaction success
probability, fe(s), under a symmetric bilateral transaction regime
is given by

fe(s) = fe(ce(s)) =

(

λe

ce(s)

R ce(s)

0
Ge(y)dy, if ce(s) > 0

0, if ce(s) = 0

(3)
wherece(s) = cuv(s) + cvu(s) is the total credit allocated along
edgee in s.

The proof is omitted due to space constraints.2 Observe from (3)
thatfe(s) depends only on the total credit capacityce(s) along the
edgee = (u, v). Therefore, for the rest of this section, instead of
thinking of fe as a function ofcuv(s) and cvu(s), we will think
of fe as the functionfe : R+ → [0, 1]. That is, fe(x) is the
steady-state transaction success probability along edgee when the
total credit allocated along it isx. We will write fe(s) to mean
fe(ce(s)) when there is no ambiguity. Next we prove some prop-
erties of the functionsfe(·) that enable us to establish that every
Nash equilibrium maximizes social welfare.

LEMMA 3.3. Consider a credit networks under a symmetric
bilateral transaction regime. For an edgee ∈ E,

1. The transaction success probability,fe(·), is continuously
differentiable and strictly increasing.

2. If ge(·) is non-increasing,fe(·) is concave.

As a corollary, ifge(·) is strictly decreasing,fe(·) is strictly con-
cave. Many natural distributions have strictly decreasingdensity

2Proofs of all results are included in the full version of thispaper,
available athttp://www.stanford.edu/~ppd/papers/
cn-formation.pdf.



functions over[0,∞). Examples include the exponential distribu-
tion, the normal distributionN (0, σ2), and the power-law distri-
bution. Next we show that if the transaction success probabilities,
fe(·), are concave, every Nash equilibrium maximizes social wel-
fare.

THEOREM 3.4. Lets be a Nash equilibrium of the network for-
mation game under a symmetric bilateral transaction regime. If the
transaction success probabilities,fe(·), e ∈ E, are concave, then
s maximizes social welfareU(s).

PROOF. Recall from Theorem 3.1 that the formation game un-
der a symmetric bilateral transaction regime is a potentialgame and
Φ(s) = U(s)/2 = γ

P

e∈E
fe(s) is a potential function. Recall

from Lemma 3.3, thatfe(·), e ∈ E, are continuously differentiable,
which impliesΦ(·) is continuously differentiable. Sincefe(·) are
concave (by assumption),Φ(·) is also concave. It was shown by
[17] that any Nash equilibrium of a potential game with a concave
and continuously differentiable potential is also a potential maxi-
mizer. Therefore,s maximizesΦ(s), or equivalently,U(s).

3.1.2 Nash Equilibria are Cycle-Reachable
Theorem 3.4 implies an equivalence between the Nash equilibria

of the game; any two Nash equilibrias ands′ have the same social
welfare,U(s) = U(s′). Next we show that iffe(·), e ∈ E, are
strictly concave, the Nash equilibria of this game are equivalent in
a much stronger sense: any two Nash equilibrias ands′ arecycle-
reachable, which, as shown by [6], implies that the sequences of
transactions that succeed starting froms and starting froms′ are
identical.

We first show that the total credit capacity of any edge inE is
identical in any Nash equilibrium.

LEMMA 3.5. Let fe(·), e ∈ E, be strictly concave. Lets and
s′ be two Nash equilibria of the network formation game. Then for
all edgese ∈ E, ce(s) = ce(s

′).

PROOF. First, let us define the marginal utility of an edgee ∈
E.

DEFINITION 3.1. Themarginal utilityof an edgee ∈ E is the
functionre : R+ → R+ given by

re(x) = f ′
e(x) =

dfe(x)

dx

We show that for any edgee ∈ E, re(s) = re(s
′). The lemma

follows as a direct consequence.
Sincefe(·) is strictly concave (by assumption), strictly increas-

ing and continuously differentiable (by Lemma 3.3),re(·) is con-
tinuous, strictly decreasing and strictly positive. In network s, the
marginal utility on an edgee ∈ E is given byre(ce(s)). We denote
it by re(s) when there is no ambiguity. LetEu be the set of edges
in E incident upon nodeu.

DEFINITION 3.2. For a nodeu ∈ V and a networks, we define
ρu(s) := maxe∈Eu

re(s) and E∗
u(s) ⊆ Eu as the set of edges

e ∈ Eu such thatre(s) = ρu(s).

In words,E∗
u(s) is the set of edges incident on nodeu that have the

highest marginal utility in networks among all edges inEu. We
show that in any Nash equilibriums, each nodeu exhausts its entire
budget and allocates non-zero credit only along edges inE∗

u(s).

PROPOSITION 1. Let s be a Nash equilibrium. Then, for all
nodesu ∈ V , both (1) and (2) are true:

1.
P

v:(u,v)∈E cuv(s) = Bu.

2. For eache = (u, v) ∈ E, if e /∈ E∗
u(s) thencuv(s) = 0.

Next we define aslack edge.

DEFINITION 3.3. Lets be a Nash equilibrium. We call an edge
e = (u, v) ∈ E a slackedge ins if e /∈ E∗

u(s) or e /∈ E∗
v(s) or

both.

Note that by Proposition 1, if edgee = (u, v) is a slack edge in
Nash equilibriums, either cuv(s) = 0 or cvu(s) = 0 or both
cuv(s) = cvu(s) = 0.

DEFINITION 3.4. Lets be a credit network. We define

1. rmin
s := mine∈E re(s) to be the minimum marginal utility

of any edgee ∈ E in s,

2. the setEmin
s := {e ∈ E | re(s) = rmin

s },

3. the setV min
s := {u ∈ V | u is incident on some edge inEmin

s },
and

4. the setV X
s ⊆ V min

s as

V X
s :={u ∈ V | u is incident upon some edge inEmin

s

and upon some edge inE − Emin
s }

The minimum marginal utility in any two Nash equilibria is iden-
tical.

PROPOSITION 2. Let s and s′ be two Nash equilibria. Then
rmin

s = rmin
s′ .

Moreover, in any two Nash equilibrias ands′, the set of edges
with the minimum marginal utility ins is identical to that ins′.

PROPOSITION 3. Let s and s′ be two Nash equilibria. Then
Emin

s = Emin
s′ .

COROLLARY 3.1. Let s and s′ be two Nash equilibria. Then
V min

s = V min
s′ andV X

s = V X
s′ .

Thus, we have established that for any two Nash equilibrias and
s′, re(s) = re(s

′) for all edgese ∈ Emin
s . We show using an

inductive argument that this is true of all edges inE.

DEFINITION 3.5. Given an instanceI : G = (V, E); fe, e ∈
E; Bu, u ∈ V of the network formation game under a symmetric
bilateral transaction regime, a networks, and an arbitrary set of
edgesF ⊆ E, we define the(s, F )-restrictionof I , denotedI(s,F ),

as follows:G(F ) := (V, E \ F ), f
(F )
e := fe, e ∈ E \ F , and

B(s,F )
u :=



0 if Eu ⊆ F
Bu −

P

(u,w)∈F
cuw(s) otherwise

Note that for a nodeu, if Eu ⊆ F , then the value ofB(s,F )
u is

immaterial sinceu has no incident edges inI(s,F ) along which to
allocate its budget.

DEFINITION 3.6. Given a networks and an arbitrary set of
edgesF ⊆ E, we define anF -restrictionof s, denoted,s(F ), as
follows: for all edgese = (u, v) ∈ E \ F, cuv(s(F )) = cuv(s)
andcvu(s(F )) = cvu(s).

PROPOSITION 4. If s is a Nash equilibrium for instanceI of the
network formation game in the bilateral transaction setting, then
s(F ) is a Nash equilibrium forI(s,F ) for any setF ⊆ E.



PROPOSITION 5. Let s and s′ be two Nash equilibria for in-
stanceI of the network formation game under a symmetric bilat-
eral transaction regime. Then for all edgese ∈ E, re(s) = re(s

′).

Observe that sincefe(·) is strictly concave,re(·) is strictly de-
creasing. Therefore, Proposition 5 implies that for alle ∈ E, ce(s) =
ce(s

′).

Lemma 3.5 allows us to show that any two Nash equilibria are
cycle-reachable.

DEFINITION 3.7 ([6]). Let s and s′ be two credit networks.
We say thats′ is cycle-reachablefroms if s can transformed intos′

by routing a sequence of payments along feasible cycles (i.e., from
a node to itself along a feasible path).

THEOREM 3.6. Let fe(·), e ∈ E, be strictly concave. Lets
ands′ be two Nash equilibria of the network formation game under
the symmetric bilateral transaction regime. Thens ands′ are cycle-
reachable from each other.

PROOF. First we define thegeneralized score vectorof a credit
networks.

DEFINITION 3.8 ([6]). Given a credit networks of n nodes,
thegeneralized score vectorof s is the vectorD(s) = 〈du(s) : u ∈
V 〉 ∈ R

n
+ where for allu ∈ V, du(s) :=

P

v∈V
cvu(s).

Next we show that any two Nash equilibria have the same general-
ized score vector.

PROPOSITION 6. Let s and s′ be two Nash equilibria. Then,
D(s) = D(s′).

PROOF. Fix a nodeu ∈ V . Recall from Proposition 1 that
X

v:(u,v)∈E

cuv(s) =
X

v:(u,v)∈E

cuv(s′) = Bu (4)

Also, from Lemma 3.5, we know that for all edgese ∈ E,

ce(s) = ce(s
′) (5)

Let Eu be the set of edges inE incident uponu. It follows from
(4) and (5) that

du(s) =
X

v∈V

cvu(s) =
X

v:(u,v)∈E

cvu(s) =
X

e∈Eu

(ce(s) − cuv(s))

=
X

e∈Eu

ce(s) − Bu =
X

e∈Eu

ce(s
′) −

X

e∈Eu

cuv(s′) = du(s′)

PROPOSITION7 ([6]). Two credit networkss ands′ are cycle-
reachable if and only ifD(s) = D(s′).

Proposition 6 along with Proposition 7 complete the proof.

The significance of this result is that ifs ands′ are cycle-reachable,
they support the same set of feasible transactions.

THEOREM 3.7 ([6]). Let s1 and s2 be two cycle-reachable
networks. If a transactionθ = 〈u, v, p〉 (i.e., routingp units from
nodeu to nodev) is feasible ins1, it is also feasible ins2. Further,
if transactionθ in networks1 results in a networks′1, and the same
transaction in networks2 results in a networks′2, thens′1 and s′2
are cycle-reachable.

Thus, for two Nash equilibrias ands′ of the game, if a sequence of
transactions succeeds starting froms it also succeeds starting from
s′. Observe that this equivalence between Nash equilibria implied
by Theorem 3.6 is stronger than that implied by Theorem 3.4.

3.2 Symmetric Transactions
Here we lift the restriction that transactions be bilateral, allowing

transactions between nodes that are not neighbors inH . We also al-
low payments between neighboring nodes to be routed along paths
other than the direct edge between them.

a b d e h j

1 1 1

1

x

1 − x

y

1 − y

Figure 2: Example of a formation game that does not admit a Nash
equilibrium.

THEOREM 3.8. There exists an instance of the network forma-
tion game under a symmetric transaction regime that does notad-
mit a Nash equilibrium.

PROOF. We will construct an instance of network formation game
and show that it does not admit a Nash equilibrium. Consider a
game with six agents:V = {a, b, d, e, j, h}. The graphH is a line
graph over nodes inV with edges(a, b), (b, d), (d, e) and so on.
For each nodeu ∈ V, Bu = 1. The non-zero transaction rates are
given by:λab = λba = λde = λed = λhj = λjh = 0.001, λae =
λea = λbj = λjb = 0.2435, λej = λje = 0.01. All other en-
tries in the transaction rate matrixΛ are zero. All transactions are
of size one. Observe that this is a unit transaction regime, so we
can use Lemma 2.1 to compute the steady-state transaction success
probabilities between nodes.

Let s be a Nash equilibrium. Then, it must be thatcab(s) =
cde(s) = chj(s) = cjh(s) = 1. Let cbd(s) = x andcba(s) =
1 − x. Similarly, letceh(s) = y andced(s) = 1 − y. Observe that
since all transactions are of size one, ands is a Nash equilibrium, it
must be thatx, y ∈ {0, 1} (i.e., x andy cannot be strictly between
0 and 1). Verify that for each of the four combinations of(x, y),
namely,(0, 0), (0, 1), (1, 0) and(1, 1), eitherb or e has an improv-
ing unilateral deviation. In fact, the four combinations form a best-
response cycle. Hence, there is no assignment ofx, y ∈ [0, 1] that
will ensure thats is a Nash equilibrium.

Next we show that even if agents reach a Nash equilibrium, it
may be arbitrarily bad in terms of social welfare compared toa
social optimum.

a b c d

1

1

1

1

(a) An equilibrium networks

a b c d

1

1 1 1

(b) An optimal networks∗

Figure 3: Example of a game with an unbounded price of anarchy.

THEOREM 3.9. The price of anarchy of the network formation
game under a symmetric transaction regime is unbounded.

PROOF. We will construct an instance of the game and show
that it has an unbounded price of anarchy. Consider a game with
four agents:V = {a, b, c, d}. The graphH is a line graph over



nodes inV with edges(a, b), (b, c) and(c, d). For each nodeu ∈
V, Bu = 1. The non-zero transaction rates are given by:λab =
λba = λcd = λdc = λ1 > 0, λad = λda = λ2 ≫ λ1. All other
entries in the transaction rate matrixΛ are zero. All transactions
are of size one.

Consider the networks shown in Fig. 3a. Observe that we can
use Lemma 2.1 to compute the steady-state transaction success
probabilities between nodes ins. Verify that s is a Nash equilib-
rium. The overall social welfare,U(s), in networks is given by

U(s) =
X

u∈V

Uu(s) =
X

u∈V

X

v∈V

fuv(s) = 2fab(s) + 2fcd(s)

= 2λ1
2

3
+ 2λ1

2

3
= λ1

8

3

Now consider the networks∗ in Fig. 3b. Verify thats∗ is a social
optimum. The overall social welfareU(s∗) is given by

U(s∗) =
X

u∈V

Uu(s∗) = 2

„

λ1
2

3
+ λ1

1

2
+ λ2

1

6

«

As λ1 → 0, the ratioU(s∗)/U(s) → ∞.

4. NETWORK FORMATION UNDER
GLOBAL RISK

Recall that in the global risk model, each agentv has a public
default probabilityδv ∈ (0, 1]. If v defaults, a nodeu that extended
creditcuv(s) to v losescuv(s) units. Thus,∆uv(s) = δvcuv(s).

4.1 Single-Minded Agents
We analyze the setting where agents may issue credit to at most

one counterpart.

DEFINITION 4.1. We say that agentu ∈ V is single-mindedif
in any credit networks, eithercuv(s) = 0 for all v ∈ V , or there
exists a single agentw ∈ V such thatcuw(s) = Bu.

Further, we assume that (i) the transaction rate matrixΛ is uniform:
for all u, v ∈ V, λuv = λ = 1/(n(n− 1)), (ii) all transactions are
size one: for allu, v ∈ V , and for allt > 0, xt

uv = 1, and (iii) for
all agentsu ∈ V , the credit budgetBu = c > 0, wherec is an
integer.

First we illustrate using a simple example that if the default prob-
abilities are in a certain range, the empty network is a Nash equilib-
rium, and the price of anarchy is∞.

Example 1: Consider a set ofn agents. Further suppose that
for all u ∈ V, γλ(h + h2) > δuc > γλh, whereh = c/(c + 1).
Let s be the empty network. Observe that, Lemma 2.1, the utility
to a nodeu from extending to any nodev in s is γλh, which by
assumption is less thanδvc. Thuss is a Nash equilibrium. On the
other hand, sinceγλ(h + h2) > δuc for all u ∈ V , the social
optimum is a star network where every node extends credit to the
root, while the root extends no credit. As a result, the priceof
anarchy is∞.

For the rest of this section, we assume that extending zero credit
is not part of the agents’ strategy set. This assumption, coupled
with the fact that agents are single-minded, implies that any credit
network formed in this setting will have exactlyn directed edges
each of capacityc, wheren is the number of agents playing the
game. Since an agent extends credit to exactly one agent in any
network, we define the following notation to denote the agentthat
has been extended credit by an agentu in networks: for a network
s, we defineτs : V → V to be the “trustee function":τs(u) = v
impliescuv(s) = c.

We use the following observation to prove our results; the obser-
vation follows from the analysis by [6] of the steady-state success
probability in trees under a unit transaction regime.

LEMMA 4.1 ([6]). Consider a networks. Let u ∈ V be a
node such that no node extends credit tou in s and letτs(u) = v.
Assume the transaction rate matrixΛ is uniform ands is under a
unit transaction regime. Then, for any nodew ∈ V \{u, v}, fuw(s) =
hfvw(s), whereh = c/(c + 1).

4.1.1 Price of Anarchy and Structure of Equilibria
It is easy to see that any socially optimal network will have astar-

like structure where the root is a node with the minimum default
probability.

LEMMA 4.2. Letv∗ ∈ arg minv∈V δv be a node with the mini-
mum default probability. Letu∗ ∈ arg minv∈V \{v∗} δv be a node
with the minimum default probability among nodes other thanv∗.
Consider a networks∗ such that for all nodesu ∈ V \{v∗}, τs∗(u) =
v∗, andτs∗(v∗) = u∗. Then,s∗ maximizes social welfare. More-
over,s∗ is also a Nash equilibrium.

Next we show that all Nash equilibria have a star-like structure.

THEOREM 4.3. For a sufficiently largen, in any Nash equilib-
rium s there exists a nodeu∗ such that for all nodesv ∈ V \
{u∗}, τs(v) = u∗.

Next we show that despite ruling out the empty network as a Nash
equilibrium, the price of anarchy in this setting can be unbounded.

THEOREM 4.4. The price of anarchy of the network formation
game with single-minded agents is unbounded.

PROOF. Consider a set ofn agents. Assume, without loss of
generality, that for nodesu1, . . . , un ∈ V, δu1

≤ . . . ≤ δun
. Let

δu1
c = γλ(n− 3)h22c/(2c + 1), andδu2

= δu3
= γλ(n− 3)h2,

where recall thath = c/(c+1). Consider the networks∗ in Fig. 4a.
It follows from Lemma 4.2 thats∗ is a socially optimal network.
Consider the networks1 in Fig. 4b. Observe that Lemma 2.1 can be
used to compute the steady-state transaction success probabilities
and, hence, the utilities, of all nodes ins1. Sincec(δu3

− δu1
) ≤

(n − 3)γλ h2

2c+1
, nodes ins1 cannot benefit from extending credit

to u1 or u2 instead ofu3. Thus,s1 is a Nash equilibrium. Note that
sinces∗ ands1 are structurally identical

X

u,v

fuv(s∗) =
X

u,v

fuv(s1)

= λ(n − 2)

„

(n − 3)h2 + 2h
2c

2c + 1
+ 2h

«

+ 2λ
2c

2c + 1

= λ(n − 2)(n − 3)h2 + Θ(n)

Thus, the total social welfare ins∗ is given by

U(s∗) = γ
X

u,v

fuv(s∗) − (n − 1)δu1
c − δu2

c

= γλ(n − 3)h2

„

(n − 2) − (n − 1)
2c

2c + 1

«

+ Θ(n) = Θ(n2)

On the other hand,

U(s1) = γ
X

u,v

fuv(s1) − (n − 1)δu3
c − δu1

c

= γ
X

u,v

fuv(s1) − γλ(n − 1)(n − 3)h2 − δu1
c = Θ(n)

Since the price of anarchy is lower-bounded byU(s∗)/U(s1), we
have that PoA =Ω(n).
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(a) Socially optimal networks∗.
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u1 u2 u4 un

c
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(b) Nash equilibriums1; nodeu3 is the root node.

Figure 4: Example of a game under the global risk model with anunbounded price of anarchy.

4.1.2 Dynamics of Network Formation
Despite the fact that the price of anarchy in this setting canbe ar-

bitrarily high, we demonstrate thatmyopic best-responsedynamics
can quickly converge to a socially optimal network.

Myopic Best ResponseFor networks, and an agentu, we define
myopic best-responsebyu as follows: letv∗ ∈ arg minv∈V \{u} δv

be a node with the lowest default probability among all nodesex-
ceptu. Then,u’s myopic best response is to extend credit tov∗,
i.e., τs′(u) = v∗, wheres′ = {cuv(s′) : u, v ∈ V } defined below
is the network resulting fromu’s myopic best-response ins. For
nodesw, y ∈ V ,

cwy(s′) :=

8

<

:

cwy(s), if w 6= u
0, if w = u andy 6= v∗

c, if w = u andy = v∗

THEOREM 4.5. Assume that the default probabilities,δv, v ∈
V , are all distinct. Consider a networks. Lets∗ be the network ob-
tained after all agents have played myopic best response, starting
from s. Thens∗ maximizes social welfare.

PROOF. Since the default probabilities are all distinct, there ex-
ists a unique node, sayv∗, with the lowest default probability, and
another nodeu∗ with the second lowest default probability. Then,
observe that for allu ∈ V \ {v∗}, τs∗(u) = v∗ andτs∗(v∗) = u∗.
The optimality ofs∗ follows from Lemma 4.2.

Sequential Arrival We consider a model where agents arrive
sequentially, and strategically decide which one of the agents in the
network to extend credit to. Lets0 be a network of two agents,
say u0 andv0, such thatτs0

(u0) = v0 and τs0
(v0) = u0. At

each timet = 1, 2, . . . , an agentut arrives and extends credit to
one of agents in the networkst−1 in order to maximizeUut

(st)
wherest is the resulting network. We denote byVt the set of agents
that have arrived up to and including timet. We show that the
agentut arriving at timet always extends credit either tout−1 or
to τst−1

(ut−1).

THEOREM 4.6. For all t ≥ 1, τst
(ut) ∈ {ut−1, τst−1

(ut−1)}.

Since the nodeut arriving at timet always extends credit to either
ut−1 or τst−1

(ut−1), the resulting network has acomb-likestruc-
ture,i.e., there is a chain of nodes forming the spine of the network,
and each node in that chain is trusted by a number of leaf nodes.

4.2 Simulations on Global and Graded Risk
To address a more general case, we turn to empirical game anal-

ysis methods. In this approach, we choose a small set of heuristic
strategies for agents to follow, and apply hierarchical reduction [18]
to limit the number of players. We repeatedly simulate strategy pro-
files in this restricted game to estimate their payoffs. Evaluating the
resulting empirical game yields insight on general strategic issues
as exhibited by the heuristic strategies. This methodologyallows us
to generalize the setting in several ways: non-uniform transaction

rates and values, issuing credit to multiple counterparts,and graded
risk based on incomplete information.

In the experiments reported here, we simulate 60-agent credit
networks and construct 6-player hierarchically reduced games in
which a multiple of 10 agents plays each strategy. In each simula-
tion run, agents are first assigned strategies, after which the random
parametersH (social network),∆ (default probabilities),Λ (trans-
action rates), andG (transaction sizes) are realized. Then agents
issue credit according to their strategies, defaults occuraccording
to ∆, and 10,000 transactions are attempted according toΛ. Each
successful transaction in which agentu buys from agentv addsxuv

to u’s payoff and subtracts 1 fromv’s, while transferring 1 unit of
credit through the network. Each agent also losescuv for each de-
faulterv to which it had issued credit. We calculate the payoff to a
strategys as the average payoff to agents playings. Strategy pay-
offs are averaged over 250 to 3500 simulation runs as necessary to
statistically distinguish empirical game equilibria.

In all simulation environments, the transaction rateλuv for each
pair of agents is drawn uniformly and then normalized. The trans-
action size distributionguv(·) = xuv is a singleton for each pair of
agents, but the value is drawn from one of two distributions:xuv ∼
U [1, 1.2] orxuv ∼ U [1, 2]. Note that we are usingxuv ∼ G here to
indicate the value to the buyeru, whereas the seller’s cost, and the
amount of credit transferred are fixed at one. Default probabilities
δv for each agent are drawn from one of three Beta distributions:
Beta(1, 1), Beta(1, 2), or Beta(1, 9).

Our experiments consider two risk models:global risk, with
no social network, andgraded risk, whereH is an Erdös-Rényi
graph. Under global risk, all agents are fully informed about trans-
action rates (Λ), transaction values (G), and default probabilities
(∆). Under graded risk, agents still knowΛ andG, but information
about∆ comes in the form of signals whose informativeness de-
creases exponentially with social network distance. If we call the
length of the shortest path betweenu andv in the social network
|SPuv|, then the number of samplesu receives fromBinom(δv)

is Suv = ⌊103−|SPuv|⌋, meaning that agents receive 100 samples
for their neighbors, 10 for nodes at distance 2, 1 at distance3, and
none at greater distances. If agentu receives a signal withSuv

samples includingSd
uv defaults, its posterior belief aboutv’s de-

fault probability is∆uv = Beta(α + Sd
uv, β + Suv − Sd

uv).

4.2.1 Strategies
We are particularly interested in what criteria agents might use to

allocate credit. We therefore focus on heuristic strategies that create
a fixed number of credit links (either 0 or 5), and allocate thesame
amount of credit (5 units) on all links. An agent’s strategicdecision
is then whether to allocate any credit, and if so, what criteria to
employ in picking the five nodes to which they connect.

We test eight heuristic strategies under which agentu could issue
the following sets of credit links, where the pair(v, cuv) indicates
thatu issuescuv units of credit to agentv:

• ZE (zero credit):∅



(a) Social network distance between all
pairs of agents.G(n=60, p= 1

12
).

(b) Social network distances for credit
links underDP. DT is similar.

(c) Social network distance for credit links
underTD. IX, TV, TP, andEU are similar.

Figure 5: Distributions of social network distances: (a) between pairs of agents; (b) over credit links produced by strategyDP with; (c) over
credit links produced by strategyTD. Parameter settings: graded risk;δv ∼ Beta(1, 2); xuv ∼ U [1, 2].

• IX (index): {(v, 5) : v ∈ {v1, . . . , v5}}

• {(v, 5) : v is among the 5 best agents according to. . .}

– DP (estimated default probability):∆uv

– TV (myopic trade value):λuvxuv

– TP (net trade profit):λuvxuv − λvu

– EU (expected utility):104(1−∆uv)(λuvxuv −λvu)−5∆uv

– TD (trade then default):104(1 − ∆uv)λuvxuv − 5∆uv

– DT (default then trade):λuvxuv − 5∆uv

Some of these strategies warrant further explanation:DP, which
chooses the agents least likely to default, has very different results
under global and graded risk. In the former case,δv is common
knowledge for all agents, so all agents playingDP coordinate their
credit issuance. Under graded risk, agents’ beliefs∆uv depend
on their position in the social network, hence differentDP agents
make varying choices. By always issuing credit to agents 1 to5,
IX provides a way for agents to coordinate in either the global or
graded risk settings.

EU estimates the expected utility attributable to each agent,as-
suming that all attempted transactions succeed.TD does the same,
but excludes the cost from selling to other agents. These strate-
gies both tend to weightλuvxuv much more heavily than∆uv, so
the strategyDT also considers both transactions and defaults, but
switches the relative weights.

Fig. 5c shows the distribution of social network distances for all
agents in the Erdös-Rényi graph under graded risk. The distribu-
tion over distances in the social network for credit links produced
by strategyDP is shown in Fig. 5b. Comparing these two his-
tograms, we can see that preferring low-default counterparts results
in issuing credit to agents nearby in the social network. Although
neighbors in the network have the sameprior probabilities of de-
fault as distant agents, the superiority of information about them
means that nearby agents are much more prevalent among those
with lowest posterior probabilities. The strategyDT produces a
similar histogram toDP, as it also relies heavily on beliefs about de-
fault probability, adding just a small factor for trade value that acts
as a tie-breaker. The remaining six strategies are influenced only
slightly or not at all by the social network, and therefore exhibit
histograms (Fig. 5c) much like the underlying distance distribution
shown in Fig. 5a.

4.2.2 Global Risk Model
The results of equilibrium analysis under global risk for each

combination of default probability distribution, and buyer surplus

are shown in the top half of Fig. 6. Strategies appearing in a cell
are supported in some symmetric mixed-strategy Nash equilibrium
of the corresponding game. Each circled strategy is a symmetric
pure-strategy Nash equilibrium.

Default probability is clearly the most relevant criterionin the
global risk setting. At least one ofDP andDT, and often both, is
supported in an equilibrium of all settings except the bottom left,
which has the lowest transaction values and highest defaultproba-
bilities (where the empty network is the unique equilibrium). That
the empty network is among the equilibria in all three environments
with low transaction values is an indication of the importance of
network effects: it is much more profitable to participate ina credit
network if many other agents do so as well. We also observe the
importance of coordinating on a centralized, star-like network, in
that DP andIX both appear as symmetric pure strategy equilibria.
This point is reinforced by the poor performance of the strategies
relying primarily on transaction value:TV, TP, andTD.
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Figure 6: Strategies appearing in symmetric Nash equilibria in six
global risk environments (top), and six graded risk environments
(bottom). Circled strategies in a cell constitute pure symmetric
equilibria of the associated game.

4.2.3 Graded Risk Model
The bottom half of Fig. 6 shows equilibrium analysis under graded

risk. DP, which appears in equilibria of nearly all global risk set-
tings is less prevalent in graded risk equilibria, indicating that it
owes much of its success to its function as a coordination device.
TD, on the other hand, continues to perform well, making clear



that default probability is still a relevant criterion to consider. In
the low-value settings, it is unsurprising that the empty network is
more likely to arise, because agents have less information available.
When defaults are sufficiently rare, a centralized network from all
agents playingIX is again an equilibrium. The case of high value
and low default probability shows a multiplicity of equilibria, in-
cluding the only appearance of one of the strategies focusedon
trades:TD.

The clear messages from our empirical game simulations are
twofold. First, coordinating on a centralized, star-like network can
be very beneficial, when such coordination is feasible. Second, net-
work effects are very strong: none of the strategies that rely heavily
on transaction-related criteria perform well; instead agents tend to
play strategies likeTD, IX, andDP that result in a high likelihood
of remaining connected to most of the network in equilibrium.

5. CONCLUSION
Our investigation of strategic issues in the formation of credit net-

works characterizes, in various settings, the nature and efficiency of
credit networks that are formed by self-interested agents autonomously
choosing how to issue credit among available counterparts.The
analysis employs game-theoretic solution concepts, employed in
theoretical examination of analytic models, as well as simulation-
based exploration of extended environments.

Under dichotomous risk, if only bilateral transactions areallowed,
we show that the formation game is a potential game. Moreover,
for many transaction size distributions, we show that agents’ utili-
ties are concave, and consequently, every Nash equilibriumof the
game maximizes social welfare. More interestingly, we showed
that the Nash equilibria are equivalent in a much stronger sense:
all Nash equilibria arecycle-reachable[6] from each other, which
implies that the sequences of transactions that can be supported
from each equilibrium network are identical. However, whenwe
allow transactions over longer paths, best-response dynamics may
not converge, and the price of anarchy is unbounded.

Under a model of global risk, if agents are limited to extend
credit to at most one other agent, we prove that the networks formed
in equilibrium have a star-like structure. Although the price of an-
archy is unbounded, myopic best response quickly convergesto a
social optimum. Even when agents are allowed to extend credit
to multiple agents, we show using empirical game simulationthat
non-empty equilibria tend to be star-like. We also analyze several
graded risk settings, and find that agents coordinate in a star-like
structure only when defaults are relatively unlikely, and otherwise,
credit links tend to be issued over short social distances conforming
to the locality of information.
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