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ABSTRACT

Credit networks are an abstraction for modeling trust betwagents

in a network. Agents who do not directly trust each other cans-

act through exchange of I0Us (obligations) along a chaimugtt

in the network. Credit networks are robust to intrusion, eaable
transactions between strangers in exchange economied)aard
the liquidity to support a high rate of transactions. We gttlte
formation of such networks when agents strategically debiolv
much credit to extend each other. When each agent trustsda fixe
set of other agents, and transacts directly only with thos®ists,

the formation game is a potential game and all Nash equaliare
social optima. Moreover, the Nash equilibria of this ganseeguiv-
alent in a very strong sense: the sequences of transactiahsan

be supported from each equilibrium credit network are iidaht
When we allow transactions over longer paths, the game may no
admit a Nash equilibrium, and even when it does, the priceaf-a

1. INTRODUCTION

The study ofstrategic network formatioseeks to understand the
emergent behavior and properties of a network when sedfésted
agents establish connections to other agents based otoitedim-
formation. In general, establishing a connection incursst but
also yields some benefit to agents connected through that &tig
agents are deemed to be utility-maximizing, that is, thekerde-
cisions in order to maximize the difference between thealtoen-
efit and their total cost. This problem has been studied inyman
different settings [11, 2, 8, 5, 1]. One can ask interestingstjons
about the emergent properties of the networks formed in sath
ting: What network topologies are feasible in equilibriurbfdow
do equilibrium networks differ from socially optimal one$fow
does this depend upon the cost of forming an edge and the benefi
derived from having a connection? If there are multiple Eoyid,
can agents select among them through some kind of iteratest-be

chy may be unbounded. Hence, we study two special cases, Firs response dynamics?

when agents have a shared belief about the trustworthifiesscb
agent, the networks formed in equilibrium have a star-ltkecture.
Though the price of anarchy is unbounded, myopic best resgpon
quickly converges to a social optimum. Similar star-likeistures
are found in equilibria of heuristic strategies found viasiation.
In addition, we simulate a second case where agents may hawe v
ing information about each others’ trustworthiness basetheir
distance in a social network. Empirical game analysis ofelsre-
narios suggests that star structures arise only when detrelrela-
tively rare, and otherwise, credit tends to be issued owvartt slcial
distances conforming to the locality of information.
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This paper is an investigation into some of these questions i
the context ofcredit networks an abstraction for modeling trust
among autonomous agents. A credit network representsréiast
tionships through a directed graph with edge capacitiesdeNdn
this graph correspond to agents, and edges corresponddibrere
lationships between them. An edge of capacifyom nodeu to
nodev indicates that agent extendsc units of credit to agent, or
equivalently,u is committed to accept I0Us (obligations) issued by
v up to valuec. The capacity of this edge can be viewed as a mea-
sure ofu’s trust inv. Nodes pay for goods and services by issuing
their own IOUs, instead of using a common currency. Credit-co
mitments between trusting nodes also enable remote tiémssc
as illustrated in Fig. 1. Say node wants to buy a good worth
units from nodeu. Nodesu andw can transact—even though
does not directly trustv—via the trusted intermediary. Assum-
ing p < min{c1, c2}, the payment proceeds hy issuing an IOU
to v worth p units, andv issuing an 10U tou worth p units. If,
however,p > min{c1, c2}, the transaction fails. As a result of a
successful transaction, the credit capacitigs andc,., decrease
by p, representing the remaining credit commitments. In aoldljti
the capacities,,, andc,,, both increase tp from zero, sinces and
w will both accept the return of their own IOUs as payment. Thus
arbitrary payments can be routed through a credit networbasg-
ing IOUs along a chain of trusting agents, obviating the rieed
a common currency. Observe that routing payments in credit n
works is identical to routing residual flows in general flovivaarks.
Also note that payment flows in the opposite direction of itret
a payment merely results in a redistribution of credit: vayex-
pend credit and sellers gain it while intermediaries exglaredit
between their neighbors, but the total credit in the netwerkains
unchanged.
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Figure 1: Updating credit to process a transaction betwesmdw
worth p units.

The credit network model was introduced independently by [7
[9], and [13] as a mechanism for enabling transactions anuoRg
trusting agents in a network. This model is particularlyIveelited
for transactions in exchange economies such as P2P netwbeke
it has been shown to improve inefficiencies resulting frorpnas
chronous demand and bilateral trading [14]. It has been tsed
thwart spam in e-mail and content-sharing systems suchuaBute
[16]. It can also be used in settings such as packet routingpisile
ad-hoc networks and combating spam in viral marketing oveias
networks. There is a large body of work in economics and $ocio
ogy on social capital and favor exchanges in networks [10lis T
model not only provides a rigorous way of keeping track obfav
owed to and by each individual in a network, but also fad#ita
exchange of favors, via trusted intermediaries, betwegivitluals
who do not know each other directly.

Prior research shows that liquidity (ability to route payns
in many credit network topologies is comparable to that inieat
lent centralized currency systems [6]. Whereas that wdastdhe
credit network to be exogenously defined, here we addrespitse
tion of how credit networks may be formed in the first place. We
endogenize network formation by explicitly modeling theiden
by each agent to issue credit to others. Issuing creditlemtsk (a
counterparty may violate the trust extended), as well asfitsr{it
increases the probability that profitable transactions beygom-
pleted). A natural question is whether agents who ratignadigh
these risks and benefits will actually form viable creditwaaks.
Network formation in the presence of risk was recently sddiy
[4] in a model motivated by financial contagion and epidenige d
eases. In their setting, nodes derive utility only from diredges,
whereas risk is contagious €., failure of distant nodes is also a
source of risk). Our model flips this: nodes derive benefimfro
transactions along direct as well as multi-hop paths, waseonly
direct edges are sources of risk.

1.1 Our Setting

In our model, each agent hasiedit budgetrepresenting the to-
tal credit that agent can extend others. Agents play a ooegsime
where they determine how much credit to extend other agant,
then engage in repeated probabilistic transactions oeeforimed
credit network. Agents derive utility from successful santions.
Extending credit to other agents increases transactiaesagrob-
ability, thus contributing to utility. On the other hand, erhagent:
extends credit to agent u risks a potential loss of utility resulting
from violation of the trust it placed in. Thus, an agent’s net utility
is its total utility from successful transactions minus tiiéity loss
from extending credit to untrustworthy agents.

We analyze the formation of credit networks under variouslino
els of risk. We start with a model afichotomous riskagents are
embedded in aocial networkrepresented by amndirectedgraph.

Agents trust their neighbors in the social network and mawgrek
credit to them. However, they associate a very high lossibfyut
with extending credit to non-neighbors, and consequengyer ex-
tend credit to them. This setting captures situationstiiéied by
the following examples where directly transacting with i@sger
may have grave consequences.

e During a disease epidemic within a human population, high-
risk groups will limit their interactions to those who betpn
to similar social circles. Evidence of this has been found, f
example, in the setting of HIV/AIDS [12, 3].

e Users trying to circumvent Internet censorship and evatle ne
work surveillance in repressive regimes make use of Interne
proxies [15]. If caught, penalties may be severe. Thussuser
rely on their friends and acquaintances to distribute proxy
addresses.

e Members of covert organizations face the prospect of severe
harm at the hands of the enemy if their identity is compro-
mised. As a result, they may rely on longstanding relation-
ships and assets built over time to conduct their business.

We also study a model @flobal risk which represents the other
extreme with respect to the dichotomous risk model. In thisleh
each node has a publicly known risk of default. This corresiso
to situations involving small, densely interacting sogjedups, or
where there are organizations such as credit-reportingtageat
systematically gather and disseminate relevant risk inétion.

Finally, we study a model ofraded riskthat helps bridge the
gap between global and dichotomous risk. Under this modeh e
agent has a private default probability. Agents receiveysignals
about each other’s probability of defaulting, and thesealg are
more informative for neighbors in the social network.

1.2 Results

Dichotomous RiskUnder dichotomous risk, when we allow only
bilateral transactions.¢., transactions only between adjacent nodes
in the social network, and payments routed only along thectlir
edge between nodes), we show that the formation game is a-pote
tial game (Theorem 3.1). This implies that best-responsauycs
always converge to a Nash equilibritinMoreover, for a large, nat-
ural class of transaction size distributions, we show thanhss’ util-
ities are concave in their credit allocations. This allowsaprove
that every Nash equilibrium of the game maximizes sociafavel
(Theorem 3.4). More interestingly, we show that the Nashlibggu
ria are equivalent in a much stronger sense: any two Nashtzei
arecycle-reachabldrom each other (Theorem 3.6), which means
that it is possible to transform one equilibrium into anotb rout-
ing a sequence of payments from a node to itself along a feasib
path. The significance of this structural property followsnfi [6]:
for any two Nash equilibrias and s’ of the game, if an arbitrary
sequence of transactions is feasible starting feorthat sequence
is also feasible starting frond.

With non-bilateral transactions, the game becomes sigmifig
less well-behaved: the game may not admit a Nash equilibrium
(Theorem 3.8), and even when it does, the price of anarchyisn t
setting can be unbounded (Theorem 3.9).

Global Risk Under global risk, we analyze the price of anarchy
and the structure of equilibria when each agent is limiteeiktend
credit to at most one other agent. We prove if we disallow thptg
network as an outcome, the price of anarchy of the formataoney

LIn this paper, the termlash Equilibriumalways refers to a pure
Nash equilibrium, except when we explicitly consider mixsticht-
egy equilibria of simulated games in Section 4.2.



is unbounded (Theorem 4.4), even though all Nash equilfie

a star-like structure (Theorem 4.3). Instead we focus orstihue-
ture of equilibria under two simple dynamics: sequentigival
and myopic best response. When nodes arrive sequentialgran
ate a single link, we show that a nodealways extends credit to
either the node that arrived immediately before or to the node
thatv extends credit to (Theorem 4.6). Thus the resulting network
has acomb-likestructure. Under myopic best response, nodes ex-
tend their entire credit budget to the node that has the loriss

of default. If the default risks are unique, this results istar-like
network structure which is also the optimal structure im&pf so-
cial welfare (Theorem 4.5). Thus, even though the price afey

can be unbounded, nodes can easily find the optimal networg us
myopic best response.

Simulations We use empirical game simulation to study a more
general formulation of the global risk model, finding thahrempty
equilibrium networks tend to have a centralized, star4dittecture
due to use of default probability as a primary credit-isgutnite-
rion. We also analyze several graded risk settings, and fiat t
centralized networks only arise when defaults are relgtivare,
and otherwise, credit links tend to be issued over shorabois-
tances conforming to the locality of information.

2. MODEL AND DEFINITIONS

Let V denote the set ofi agents. Each agent € V has a
budgetB, > 0 representing the total credit thatcan extend to
other agents iv. Agents play a one-shot game where they choose
credit allocations to form an initial network Agents represent
nodes of the formed network. An edge from nadé nodev of
capacityc.. (s) represents the credit extended by agett agent
v in the networks. A strategy for agent. is a set offeasiblecredit
allocations{c.,(s),v € V : cun(s) > 0andy_, .\ cuv(s) <
B,}.

2.1 Transaction Model

Once a networks is formed, agents engage in repeated proba-
bilistic transactions with each other. At each time gtep1,2,...,

a pair of transacting agents, v), with u being the payer (buyer)
andwv the payee (seller), is chosen with probability,. The trans-
action rate matrixA = {A., : w,v € V} is public, and sat-
isfies the following properties: (Au. = 0, (i) Awo > 0, and
(i) 32, Auww = 1.

Suppose agents:, v) are chosen to transact at tirheThen the
transaction sizeg!,,, betweenu andv is drawn from atransac-
tion size distributionover [0, oo) with a probability density func-
tion (pdf) g.. () and a corresponding cumulative distribution func-
tion (cdf) G (-). We assume that the pdfs.(-) are public. Let
G := {guv () : u,v € V} be the pdf matrix.

Given a transaction size, afeasible pathin the networks from
nodev to nodeu is a set of directed edgé3 = {(v, u1), (u1,u2), ...,
(uk—1,ur), (uk,u)} such that for all(w,y) € P, cwy(s) > x.
We route payments along the shortest feasible path in tiveorlet
Let P!, be the shortest feasible path in the credit network from
v to u at timet. A successful transaction of siz€,, results in
a change of credit capacities along edge®j as follows. Let

st = {cun(s') : u,v € V} denote the state of the netwoskat
timet = 0,1,2,..., wheres® = s. Then, forw,y € V and for
t >0,
CWH(Stil) - xtu'w If (w7y) € P'Z;1
Coy(s") = { cuwy(st™Y) + b, i (y,w) € PLLY
t—

otherwise

So, in order for a payment’,,, from v to v to succeed, there must
exist a feasible path in the credit netwdrkm the payee to the
payerw. If no such path exists, the transaction fails, in which case
all credit capacities remain unchanged. Thus, fot all 0, and for
all u, v S V, Cuv(st) + C’uu(st) - Cuv(s) + Cvu(s)-

The repeated probabilistic transactions induce a Markainch
over the states of the network, which we denoteMdys, A, G). A
transaction regimés defined as the tuple\, G). We say a transac-
tion regime(A, G) is symmetridf the transaction rate matrix is
symmetric: for all nodes, v € V, Auw = Avu, @and the transaction
size pdfs are symmetric: for all, v € V, guv(-) = gou(-).

We are interested in the success probabilities of trarmacin
the steady-state of this Markov chain, which are difficulctar-
acterize for arbitrary networks and transaction regimesweéver,
we can do so in some simple cases, includinguthié transaction
regime

DEFINITION 2.1. Aunit transaction regimever credit network
s is a transaction regimgA, G) where, for allu, v € V" and for all
t > 0, the transaction size!, = 1, the transaction rate matrix
is symmetric and the Markov chai (s, A, G) is ergodic.

When the networls is acyclic (ignoring directionality), [6] charac-
terize the steady-state success probabilities under &ranfaction
regime.

LEMMA 2.1 ([6]). Consider a credit network. Assume that
s is acyclic if we ignore the directions of the edgessinLet P,
be the set of (undirected) edges along the path between nodes
andwv. Then, in a unit transaction regime ovey the steady-state
transaction success probability... (s), between two nodes, v €
V is given by

Lewy (s)] + [eyw(s)]
Lewy (s)] + Leyw(s)] +1

fu’u (5) = )\uv

I1

e=(w,y) EPuv

2.2 Utility

Agents choose credit allocations to maximize their utiliBuc-
cessful transactions contribute to agents’ utility, bueratg risk
loss of utility when they extend credit to potentially urgtworthy
agents. We model this risk in several ways, but denote theated
loss of utility tou associated with the prospect of defaultdypy
Aus(s), with the constraints that\,,(s) > 0 andA,,(s) > 0
only if cuv(s) > 0. Let fu.(s) be the steady-state success proba-
bility of the transactions fromx to v when the initial network is.
Then, the total utility of an agent when the initial network is is

given by
>

Uas) =1 3 fuuls) -
VEV iy (s)>0

weV

Auv (5) (1)

where~ is a constant that converts transaction success probabil-
ity into equivalent utility units. The overafiocial welfarein net-
work s is simply the sum of utilities of all nodes ist U(s) =

> uey Uu(s)-
2.3 Risk Model

In order to model variation il ., (s), we assume that the agents
are embedded in an exogenously-defisedial networkepresented
by a simple undirected grapH = (V, E). The social network
H influences the howA,,, (s) for an agentu varies across agents
v € V. We consider three specific models of how risk changes as
a function of distance betweenandv in H.

Dichotomous Risk In this model, an agent partitions the
set of agentd/ into two sets using?: neighbors inH and non-
neighbors inH . For any networls, agentu estimates risk exposure



to be:
0,

o0,

if (u,v) € E

Auo(s) otherwise

~{ @
This model assumes agents are willing to interact only witkirt
neighbors inH . For any credit network formed under this model,
Cuv(s) = 01if (u,v) ¢ E.

Global Risk. In this model, we assume that each agefias
a default probabilityy, € (0, 1] which is public. Ifv defaults, a
nodew that extended credit,, (s) to v losescuy(s) units. Thus,
Ay (8) = dvcun(8).

Graded Risk. Here, as in the Global Risk model, each agent
v has default probability,,, but this information is not publicly
known. Instead, each aganteceives a signdl,,, about the default
probability of each other agent These signals are decreasingly
informative with distance irff, so agents know much more about
the default probabilities of their neighbors in the sociatwork
than about distant nodes. In our simulations, we implentéatly
drawing agents’ default probabilities from a beta disttidmor 5, ~
Beta(a, 3). Agentu then receives a signal in the form of some
number of samples.,,., drawn from the binomial distribution aoh,,
whereS.,, decreases exponentially with social network distance.

3. NETWORK FORMATION UNDER
DICHOTOMOUS RISK

Recall that under dichotomous risk,.. (s) is defined by (2), as
a result nodes only extend credit to their neighbor&in

3.1 Symmetric Bilateral Transactions

We call a transaction between nodeandv bilateral if (u,v) €
E and the payment is routed along the edgev). We allow only
bilateral transactions: if a payment between adjacent sxaded
v cannot be routed along the direct edgev), we fail the transac-
tion. As aresult, if(u,v) ¢ E, the steady-state success probabil-
ity fuv(s) = fuou(s) = 0. Moreover, the steady-state transaction
success probabilities along an edge= (u,v) in a networks are
governed only by the credit allocations,, (s), cvu(s), alonge in
s. We also assume that the transaction reg{thg7) is symmetric
and that\,, > 0 if (u,v) € E. As aresult, for all nodes andv,
fuo(s) = fou(s).

In our analysis of the symmetric bilateral transactionmesifor
an edge: = (u,v) € E, we will use, ge(-), Ge(-) and fe(-) to
denoteMuy, guv(+), Guo(+), andfu. (+), respectively.

We first show that in this setting, the network formation gase
a potential game.

THEOREM 3.1. The network formation game under a symmet-
ric bilateral transaction regime is a potential game.
PROOF Consider the functio®(s) defined as
U(s 1 ~
a() = L = LS 09 = T30S fuals)
ueV ueVveVv

Since we are in a symmetric bilateral transaction regifne(s) =
fou(s) for all (u,v) € E, and fu(s) = 0if (u,v) ¢ E. There-

fore,

DD fuls) =2 fels)

ueVveV ecE
This implies®(s) = v > .. fe(s). We will show thatd(s) is a
potential function. Fix a node € V. Consider a network’ which
differs from s only in the credit allocation of.. Formally, for all

w,y €V,
n_ | cuy(s), Ifw#u
cwy(s)—{ Cwy, fw=wand(u,y) € E
where{c,,, : (u,y) € E} is any feasible allocation af's credit.

Let E, C E be the set of edges incident uparin E. Note that
for all ' = (u',v') & Fu, cww(s) = cuwo(s’). As a result,
fer(8) = for (s"). It follows that

O(s) = (s ) =7 Y (fe(s) = fe(s)) = Uu(s) = Uul(s)

ecE,

Thus the network formation game is a potential game with) as
the potential function. [

Theorem 3.1 implies that in this setting, a Nash equilibrian
ways exists, best-response dynamics always converge tesh Na
equilibrium, and finally, because the potential functiogiien by
®(s) = U(s)/2, the price of stability is 1. Next we will show that
for a large, natural class of transaction size distribigjcagents’
utilities are concave, and consequently, the price of dayaicalso

1, i.e., every Nash equilibrium of the formation game maximizes
social welfare.

3.1.1 Nash Equilibria Maximize Social Welfare

Consider an edge = (u,v) € E. Assume thag.(-) has sup-
port over|[0, co). Also, letG.(-) be twice differentiable. First we
derive an expression fof.(s) in terms of the credit allocations
cuv(8) andeyy (s) along edgee.

LEMMA 3.2. Consider a credit network. For nodesu,v € V'
such thate = (u,v) € E, the steady-state transaction success
probability, f.(s), under a symmetric bilateral transaction regime
is given by

Ae ce(s)
ce(s) JO

Ge(y)dy,
0,

if ce(s)

>
if ce(s) =

0
0
®)
wherec.(s) = cuv(s) + cou(s) is the total credit allocated along
edgee in s.

fe(s) = fe(ce(s)) = {

The proof is omitted due to space constrant©bserve from (3)
that f. (s) depends only on the total credit capacitys) along the
edgee = (u,v). Therefore, for the rest of this section, instead of
thinking of f. as a function ofc..(s) andc,w(s), we will think

of f. as the functionf. : Ry — [0,1]. Thatis, f.(z) is the
steady-state transaction success probability along edgeen the
total credit allocated along it is. We will write f.(s) to mean
fe(ce(s)) when there is no ambiguity. Next we prove some prop-
erties of the functiong. () that enable us to establish that every
Nash equilibrium maximizes social welfare.

LEMMA 3.3. Consider a credit network under a symmetric
bilateral transaction regime. For an edgec FE,

1. The transaction success probabilit(-), is continuously
differentiable and strictly increasing.

2. If gc() is non-increasingy.(-) is concave.

As a corollary, ifg.(-) is strictly decreasingj. () is strictly con-
cave. Many natural distributions have strictly decreagiagsity

2Proofs of all results are included in the full version of thiper,
available athtt p: //ww. st anf or d. edu/ ~ppd/ paper s/
cn-formati on. pdf.



functions over{0, co). Examples include the exponential distribu-
tion, the normal distributionV'(0, o), and the power-law distri-
bution. Next we show that if the transaction success prditiabj

fe(+), are concave, every Nash equilibrium maximizes social wel-

fare.

THEOREM 3.4. Lets be a Nash equilibrium of the network for-
mation game under a symmetric bilateral transaction regithtéhe
transaction success probabilitiegs (-), e € E, are concave, then
s maximizes social welfa€ (s).

PrROOF Recall from Theorem 3.1 that the formation game un-
der a symmetric bilateral transaction regime is a potegtiate and
®(s) = U(s)/2 = v>_.cp fe(s) is a potential function. Recall
from Lemma 3.3, thaf. (), e € E, are continuously differentiable,
which implies®(-) is continuously differentiable. Sincg(-) are
concave (by assumption®(-) is also concave. It was shown by
[17] that any Nash equilibrium of a potential game with a aec
and continuously differentiable potential is also a patnhaxi-
mizer. Therefores maximizes®(s), or equivalentlyl/(s). [

3.1.2 Nash Equilibria are Cycle-Reachable

Theorem 3.4 implies an equivalence between the Nash edgailib
of the game; any two Nash equilibricands’ have the same social
welfare,U(s) = U(s’). Next we show that iff-(-), e € E, are
strictly concave, the Nash equilibria of this game are egjaitt in
a much stronger sense: any two Nash equilibréand s’ arecycle-
reachable which, as shown by [6], implies that the sequences of
transactions that succeed starting frerand starting froms’ are
identical.

We first show that the total credit capacity of any edgeils
identical in any Nash equilibrium.

LEMMA 3.5. Let fo(-), e € E, be strictly concave. Let and
s’ be two Nash equilibria of the network formation game. Then fo
alledgese € E, ce(s) = ce(s).

PrROOF First, let us define the marginal utility of an edgec
E.

DerINITION 3.1. Themarginal utilityof an edgee € E is the
functionr. : Ry — R given by

ro(@) = fi(e) = 2=

We show that for any edge € E,7.(s) = re(s’). The lemma
follows as a direct consequence.

Since f.(+) is strictly concave (by assumption), strictly increas-
ing and continuously differentiable (by Lemma 3.8)(-) is con-
tinuous, strictly decreasing and strictly positive. Inwetk s, the
marginal utility on an edge € E is given byr.(c.(s)). We denote
it by 7. (s) when there is no ambiguity. Lét, be the set of edges
in E incident upon node:.

dfe(x)

DEFINITION 3.2. Foranodeu € V and a networks, we define
pu(s) := maxeer, r(s) and E;(s) C E, as the set of edges
e € E, suchthatr(s) = pu(s).

In words, E;, (s) is the set of edges incident on nodé¢hat have the
highest marginal utility in network among all edges if,,. We
show that in any Nash equilibrium) each node: exhausts its entire
budget and allocates non-zero credit only along edgés;is).

PROPOSITION 1. Let s be a Nash equilibrium. Then, for all
nodesu € V, both (1) and (2) are true:

1. Zv:(u,v)EE C“'U(S) = BU

2. Foreache = (u,v) € E, ife ¢ E;(s) thencu.(s) = 0.
Next we define alack edge

DEFINITION 3.3. Lets be a Nash equilibrium. We call an edge
e = (u,v) € E aslackedge insif e ¢ E;(s) ore ¢ E;(s) or
both.

Note that by Proposition 1, if edge = (u,v) is a slack edge in
Nash equilibriums, eitherc,.(s) = 0 or cyu(s) = 0 or both
Cuv (5) = Cyu (8) =0.

DEFINITION 3.4. Lets be a credit network. We define

1. ™" .= min.cp 7. (s) to be the minimum marginal utility
of any edgee € F'in s,

2. the set?™™ := {e € E | re(s) = r"},

3. the seV™" := {u € V | wis incident on some edge ™"},
and

4. the set/;X C V™in as
V.X :={u € V | uis incident upon some edge K{""

and upon some edge i — EI""}

The minimum marginal utility in any two Nash equilibria iseia-
tical.

PROPOSITION 2. Let s and s’ be two Nash equilibria. Then

min __ ,_ min

s s’

Moreover, in any two Nash equilibriaands’, the set of edges
with the minimum marginal utility irs is identical to that irs’.

PROPOSITION 3. Let s and s’ be two Nash equilibria. Then

Emin _ min
s - Hsh o

COROLLARY 3.1. Lets and s’ be two Nash equilibria. Then
ymin — ymin gnd X = VX,

Thus, we have established that for any two Nash equilibéad
s, re(s) = re(s') for all edgese € EF™. We show using an
inductive argument that this is true of all edgestin

DEFINITION 3.5. Given an instancd : G = (V, E); fe,e €
E; B,,u € V of the network formation game under a symmetric
bilateral transaction regime, a network and an arbitrary set of
edgesF’ C E, we define thé¢s, F')-restrictionof I, denoted/; ),

as follows:G") := (V,E\ F), f) .= f.,e € E\ F, and

g . 0 if £, CF
YT Bu = X(uwyer Cun(s) otherwise

Note that for a node., if £, C F, then the value oiBff’F) is
immaterial since: has no incident edges i, ) along which to
allocate its budget.

DEFINITION 3.6. Given a networks and an arbitrary set of
edgesF C E, we define anf-restrictionof s, denoted,sr), as
follows: for all edgese = (u,v) € E\ F, cuu(5(r)) = Cun(s)
andcyw () = Cou(s).

PROPOSITION 4. If sis a Nash equilibrium for instanckof the
network formation game in the bilateral transaction segjtithen
s(r) is a Nash equilibrium fod , r for any setF" C E.



PROPOSITION 5. Let s and s’ be two Nash equilibria for in-
stancel of the network formation game under a symmetric bilat-
eral transaction regime. Then for all edges E, 7¢(s) = 7e(s’).

Observe that sincé. (-) is strictly concaver.(-) is strictly de-
creasing. Therefore, Proposition 5implies that foeadl E, c.(s)
ce(s’). O

Lemma 3.5 allows us to show that any two Nash equilibria are
cycle-reachable

DEFINITION 3.7 ([6]). Let s and s’ be two credit networks.
We say that’ is cycle-reachablérom s if s can transformed inta’
by routing a sequence of payments along feasible cycksffom
a node to itself along a feasible path).

THEOREM 3.6. Let f.(-), e € FE, be strictly concave. Let
ands’ be two Nash equilibria of the network formation game under
the symmetric bilateral transaction regime. Theands’ are cycle-
reachable from each other.

PrROOF. First we define thgeneralized score vectaf a credit
networks.

DEFINITION 3.8 ([6]). Given a credit networls of n nodes,
thegeneralized score vectof s is the vectotD(s) = (du(s) : u €
V) € RY where for allu € V, du(s) := 3, oy Coul(s)-

Next we show that any two Nash equilibria have the same gknera
ized score vector.

PROPOSITION 6. Let s and s’ be two Nash equilibria. Then,
D(s) = D(s).

PROOF Fix a nodeu € V. Recall from Proposition 1 that

Z cun(8) = z cuv(s') = By 4)
vi(u,v)EE vi(u,v)EE
Also, from Lemma 3.5, we know that for all edges E,
ce(s) = ce(s) 5)

Let E, be the set of edges iR incident uponu. It follows from

(4) and (5) that
du(s) =S o) = 3 cuuls)

S (cels) — un(s))

veV vi(u,v)EE ecEy
=Y ce(s)=Bu= Y ce(s) = Y cunl(s) = du(s)
ecEy, e€Ey e€Ey

O

PROPOSITION7 ([6]). Two credit networks ands’ are cycle-
reachable if and only iD(s) = D(s').

Proposition 6 along with Proposition 7 complete the prodf]

The significance of this result is thatdfands’ are cycle-reachable,
they support the same set of feasible transactions.

THEOREM3.7 ([6]). Let s; and s2 be two cycle-reachable
networks. If a transactiod = (u, v, p) (i.e. routing p units from
nodeu to nodev) is feasible insy, it is also feasible ins2. Further,
if transactiond in networks; results in a network?, and the same
transaction in networls, results in a networls,, thens)} and s}
are cycle-reachable.

Thus, for two Nash equilibria ands’ of the game, if a sequence of
transactions succeeds starting frerh also succeeds starting from
s’. Observe that this equivalence between Nash equilibridiéchp
by Theorem 3.6 is stronger than that implied by Theorem 3.4.

3.2 Symmetric Transactions

Here we lift the restriction that transactions be bilateaibwing
transactions between nodes that are not neighbdik /e also al-
low payments between neighboring nodes to be routed alathg pa
other than the direct edge between them.

1 z 1 Yy 1
@ 1z b d 1—y © h 1 J

Figure 2: Example of a formation game that does not admit &Nas
equilibrium.

THEOREM 3.8. There exists an instance of the network forma-
tion game under a symmetric transaction regime that doesadot
mit a Nash equilibrium.

PrRoOOFR We will construct an instance of network formation game
and show that it does not admit a Nash equilibrium. Consider a
game with six agents’” = {a,b,d, ¢, j, h}. The graphH is a line
graph over nodes ifY” with edges(a, b), (b, d), (d,e) and so on.
For each node. € V, B, = 1. The non-zero transaction rates are
given by Aab = Aba = Ade = Aed = )\hj = )\jh = 0.001, Aae =
Aea = )\bj = )\jb = 0.24357 )\ej = )\je = 0.01. All other en-
tries in the transaction rate matrixare zero. All transactions are
of size one. Observe that this is a unit transaction regimeye
can use Lemma 2.1 to compute the steady-state transactioassu
probabilities between nodes.

Let s be a Nash equilibrium. Then, it must be that (s)
Cde(s) = cnj(s) = cjn(s) = 1. Letepa(s) = = andepa(s)
1 — . Similarly, letc.x (s) = y andceq(s) = 1 — y. Observe that
since all transactions are of size one, anisla Nash equilibrium, it
must be that:, y € {0, 1} (i.e,, = andy cannot be strictly between
0 and 1). Verify that for each of the four combinations(ef ),
namely,(0, 0), (0, 1), (1, 0) and(1, 1), eitherb or e has an improv-
ing unilateral deviation. In fact, the four combinationsnfoa best-
response cycle. Hence, there is no assignment gfe [0, 1] that
will ensure thats is a Nash equilibrium. [

Next we show that even if agents reach a Nash equilibrium, it
may be arbitrarily bad in terms of social welfare compared to
social optimum.

1 1
a 1 b c 1 d

(a) An equilibrium networks
1

0 OO

a 1 b 1 ¢ 1 d

(b) An optimal networks*

Figure 3: Example of a game with an unbounded price of anarchy

THEOREM 3.9. The price of anarchy of the network formation
game under a symmetric transaction regime is unbounded.

PrROOF We will construct an instance of the game and show
that it has an unbounded price of anarchy. Consider a gante wit
four agents:V = {a,b,c,d}. The graphH is a line graph over



nodes inV" with edges(a, b), (b, ¢) and(c, d). For each node €
V, B, = 1. The non-zero transaction rates are given hy;
Mba = Aed = Ade = A1 > 0, Aad = Ada = A2 > A1. All other
entries in the transaction rate matrixare zero. All transactions
are of size one.

Consider the network shown in Fig. 3a. Observe that we can
use Lemma 2.1 to compute the steady-state transactionssucce
probabilities between nodes in Verify that s is a Nash equilib-
rium. The overall social welfard/(s), in networks is given by

Uls) =D Uuls) = D D fuols) = 2fav(s) + 2fea(s)

ueV ueV eV

2 2 8
—2)\1§ +2)\1§ = )\15

Now consider the network™ in Fig. 3b. Verify thats™ is a social
optimum. The overall social welfai€(s™) is given by
U(s") =) _ Uu(s") =2

1
<)\1 + )\26)
ueV

As A1 — 0, the ratioU (s*)/U(s) — co. O

2

1
)\_
5 T3

4. NETWORK FORMATION UNDER
GLOBAL RISK

Recall that in the global risk model, each agerftas a public
default probabilitys,, € (0, 1]. If v defaults, a node that extended
creditcyy (s) to v losescyy (s) units. Thus Ay, (8) = dvcuv(S).

4.1 Single-Minded Agents

We analyze the setting where agents may issue credit to dt mos

one counterpart.

DEFINITION 4.1. We say that ageni € V is single-mindedf
in any credit networls, eitherc,.(s) = 0 for all v € V, or there
exists a single agent € V such thatc,.,(s) = Ba.

Further, we assume that (i) the transaction rate matisuniform:
forallu,v € V, Auw = XA = 1/(n(n— 1)), (i) all transactions are
size one: for alu, v € V, and for allt > 0, £, = 1, and (iii) for
all agentsu € V, the credit budgeB, = ¢ > 0, wherec is an
integer.

First we illustrate using a simple example that if the defpcdb-
abilities are in a certain range, the empty network is a Nasiilib-
rium, and the price of anarchy i®.

Example 1: Consider a set of agents. Further suppose that
forallu € V,yA(h + h?) > duc > yAh, whereh = ¢/(c + 1).
Let s be the empty network. Observe that, Lemma 2.1, the utility
to a nodeu from extending to any node in s is yAh, which by
assumption is less thainc. Thuss is a Nash equilibrium. On the
other hand, sinceA(h + h?) > &,c for all w € V, the social
optimum is a star network where every node extends crediteo t
root, while the root extends no credit. As a result, the pote
anarchy isx.

For the rest of this section, we assume that extending zecbtcr
is not part of the agents’ strategy set. This assumptionpledu
with the fact that agents are single-minded, implies thgtaadit
network formed in this setting will have exactlydirected edges
each of capacity, wheren is the number of agents playing the
game. Since an agent extends credit to exactly one agentyin an
network, we define the following notation to denote the agleat
has been extended credit by an ageirt networks: for a network
s, we definers : V' — V to be the “trustee functionrs(u) = v
impliescy.(s) = c.

We use the following observation to prove our results; theeob
vation follows from the analysis by [6] of the steady-statecess
probability in trees under a unit transaction regime.

LEMMA 4.1 ([6]). Consider a networls. Letu € V be a
node such that no node extends credittm s and letrs (u) = v.
Assume the transaction rate matrixis uniform ands is under a
unit transaction regime. Then, for any nodec V\{u, v}, fuw(s) =
hfow(s), whereh = c¢/(c+ 1).

4.1.1 Price of Anarchy and Structure of Equilibria

Itis easy to see that any socially optimal network will hagtaa-
like structure where the root is a node with the minimum diefau
probability.

LEMMA 4.2. Letv™ € arg minyecv §, be a node with the mini-
mum default probability. Let™ € arg min, ¢y (v~} d» be a node
with the minimum default probability among nodes other than
Consider a network™ such that for allnodes € V\{v*}, 7o« (u)
v*, andt,= (v*) = u”*. Then,s* maximizes social welfare. More-
over,s* is also a Nash equilibrium.

Next we show that all Nash equilibria have a star-like strcet

THEOREM 4.3. For a sufficiently largen, in any Nash equilib-
rium s there exists a node™ such that for all nodes € V' \

{u*}, 7s(v) = u*.

Next we show that despite ruling out the empty network as &Nas
equilibrium, the price of anarchy in this setting can be wrizted.

THEOREM 4.4. The price of anarchy of the network formation
game with single-minded agents is unbounded.

PrROOF Consider a set ofi agents. Assume, without loss of
generality, that for nodes., ..., u, € V, du; < ... < 6y, . Let
Surc = YA (n —3)h*2¢/(2c+ 1), anddy, = duy = YA (n — 3)A?,
where recall that = ¢/(c+1). Consider the network" in Fig. 4a.

It follows from Lemma 4.2 that™ is a socially optimal network.
Consider the network; in Fig. 4b. Observe that Lemma 2.1 can be
used to compute the steady-state transaction successpittdm
and, hence, the utilities, of all nodesdn. Sincec(du; — 0u,) <

(n— 3)w\%, nodes ins; cannot benefit from extending credit
towu; oruz instead ofus. Thus,s; is a Nash equilibrium. Note that
sinces™ ands; are structurally identical

S fun(s) = 3 funlsr)

. _ _ Py 2c 2c
=An-2) ((n 3)h +2h—2c+ 1 +2h> + 2X

2c+1

= \n —2)(n—3)h* +O(n)

Thus, the total social welfare isi* is given by

U(s™) =7 fun(s") = (n = 1), ¢ — Suyc

u,v

= yA(n — 3)h* ((n —2)—(n—-1)
On the other hand,
U(s1) =7 fun(s1) = (n = 1)duzc — duc

u,v

=73 fun(s1) = 3A(n = D)(n — 3)h* — du,c = O(n)

u,v

2c
2c+1

@(nQ)

) +0(n)

Since the price of anarchy is lower-boundedibfs™) /U (s1), we
have that PoA £2(n). O
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(a) Socially optimal network™.

U uz2 Ugq Un

(b) Nash equilibriumsy; nodeus is the root node.

Figure 4: Example of a game under the global risk model withramounded price of anarchy.

4.1.2 Dynamics of Network Formation

Despite the fact that the price of anarchy in this settingtzzar-
bitrarily high, we demonstrate thatyopic best-respongst/namics
can quickly converge to a socially optimal network.

Myopic Best Responsé&or networks, and an agent, we define
myopic best-respondsy v as follows: let™ € arg min, ey {u} 0o
be a node with the lowest default probability among all nogbes
ceptu. Then,u’s myopic best response is to extend credivto
i.e, 7o (u) = v*, wheres’ = {cuv(s’) : u,v € V} defined below
is the network resulting from’s myopic best-response i1 For
nodesw,y € V,

if w+#u
if w=wandy #v*
if w=wandy =v*

Cwy (8)7
0,
)

cuy(s') ==

THEOREM 4.5. Assume that the default probabilities,, v €
V, are all distinct. Consider a network Lets* be the network ob-
tained after all agents have played myopic best responagtjraj
from s. Thens* maximizes social welfare.

PrROOF Since the default probabilities are all distinct, there ex
ists a unigque node, say’, with the lowest default probability, and
another node.* with the second lowest default probability. Then,
observe thatfor all € V' \ {v*}, 7o« (u) = v* andrs« (v*) = u™.
The optimality ofs* follows from Lemma 4.2. [

Sequential Arrival We consider a model where agents arrive
sequentially, and strategically decide which one of thentgyie the
network to extend credit to. Lef, be a network of two agents,
say up andwvg, such thatrs,(uo) = wvo and g, (vo) = uo. At
each timet = 1,2,..., an agentu; arrives and extends credit to
one of agents in the network_, in order to maximizelU,, (s)
wheres; is the resulting network. We denote bythe set of agents
that have arrived up to and including time We show that the
agentu; arriving at timet always extends credit either to_; or
to Tsi_1 (ut71).

THEOREM 4.6. Forall ¢t > 1, 7, (ut) € {ue—1,7s,_, (ue—1)}.

Since the node; arriving at timet always extends credit to either
us—1 Or 75, , (us—1), the resulting network has@mb-likestruc-
ture,i.e., there is a chain of nodes forming the spine of the network,
and each node in that chain is trusted by a number of leaf nodes

4.2 Simulations on Global and Graded Risk

rates and values, issuing credit to multiple counterpartd,graded
risk based on incomplete information.

In the experiments reported here, we simulate 60-agenitcred
networks and construct 6-player hierarchically reducetggmin
which a multiple of 10 agents plays each strategy. In eachilaim
tion run, agents are first assigned strategies, after whizheindom
parameterdd (social network) A (default probabilities)A (trans-
action rates), and (transaction sizes) are realized. Then agents
issue credit according to their strategies, defaults oacaording
to A, and 10,000 transactions are attempted accordidg tBach
successful transaction in which agertiuys from agent addsz..,
to u's payoff and subtracts 1 fromi's, while transferring 1 unit of
credit through the network. Each agent also lasgsfor each de-
faulterv to which it had issued credit. We calculate the payoff to a
strategys as the average payoff to agents playingStrategy pay-
offs are averaged over 250 to 3500 simulation runs as neydssa
statistically distinguish empirical game equilibria.

In all simulation environments, the transaction raig for each
pair of agents is drawn uniformly and then normalized. Thagr
action size distributiog... (-) = z«. is a singleton for each pair of
agents, but the value is drawn from one of two distributians; ~
Ul1,1.2] orzu, ~ U[1,2]. Note that we are using.., ~ G here to
indicate the value to the buyar whereas the seller’s cost, and the
amount of credit transferred are fixed at one. Default priitiak
0, for each agent are drawn from one of three Beta distributions
Beta(1,1), Beta(1,2), or Beta(1,9).

Our experiments consider two risk modelgtobal risk with
no social network, andraded risk where H is an Erdos-Rényi
graph. Under global risk, all agents are fully informed attoans-
action rates {), transaction valuesj), and default probabilities
(A). Under graded risk, agents still knaandg, but information
aboutA comes in the form of signals whose informativeness de-
creases exponentially with social network distance. If aithe
length of the shortest path betweerandv in the social network
|SPuv|, then the number of samplesreceives fromBinom(d. )
is Sy = |103715Puel | meaning that agents receive 100 samples
for their neighbors, 10 for nodes at distance 2, 1 at dist&@nhead
none at greater distances. If agenteceives a signal witt,.,
samples includings?, defaults, its posterior belief abouts de-
fault probability isA,,, = Beta(a + S&,, 8 4 Suw — SL,).

4.2.1 Strategies

We are particularly interested in what criteria agents rmigie to
allocate credit. We therefore focus on heuristic stratetjiat create

To address a more general case, we turn to empirical game anal® fixed number of credit links (either 0 or 5), and allocateshme

ysis methods. In this approach, we choose a small set ofdtieuri
strategies for agents to follow, and apply hierarchicaliotion [18]
to limit the number of players. We repeatedly simulate strgaipro-
files in this restricted game to estimate their payoffs. Eatihg the
resulting empirical game yields insight on general stiateggues
as exhibited by the heuristic strategies. This methodoédigys us
to generalize the setting in several ways: non-uniformsaation

amount of credit (5 units) on all links. An agent’s stratedgcision
is then whether to allocate any credit, and if so, what datés
employ in picking the five nodes to which they connect.

We test eight heuristic strategies under which agerduld issue
the following sets of credit links, where the péir, c..,) indicates
thatu issues,,,, units of credit to agent:

e ZE (zero credit):)
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Figure 5: Distributions of social network distances: (a@en pairs of agents; (b) over credit links produced bytestigDP with; (c) over
credit links produced by strate@yD. Parameter settings: graded risk;~ Beta(1,2); zu. ~ U[1,2].

e IX(index): {(v,5) : v € {v1,...,v5}}

e {(v,5) : vis among the 5 best agents according.t¢

— DP (estimated default probability)A .,

— TV (myopic trade value) ., Ty

— TP (net trade profit) AuvTuw — Aow

— EU (expected utility)10* (1 — Avy) (AuoTuw — Aow) — 500
— TD (trade then default)1l0* (1 — Auo) AuoTuv — 5Auy

— DT (default then trade)AyoTuy — 5Auw

Some of these strategies warrant further explanaf: which
chooses the agents least likely to default, has very differesults
under global and graded risk. In the former ca%ejs common
knowledge for all agents, so all agents playibig coordinate their
credit issuance. Under graded risk, agents’ beligfs, depend
on their position in the social network, hence differ®R agents
make varying choices. By always issuing credit to agents 4, to
IX provides a way for agents to coordinate in either the global o
graded risk settings.

EU estimates the expected utility attributable to each agest,
suming that all attempted transactions succéddldoes the same,
but excludes the cost from selling to other agents. Thesdestr
gies both tend to weight,,, z.., much more heavily thaa,,,,, SO
the strategyDT also considers both transactions and defaults, but
switches the relative weights.

Fig. 5¢ shows the distribution of social network distanaesal
agents in the Erdos-Rényi graph under graded risk. Thellistr
tion over distances in the social network for credit linkeguced
by strategyDP is shown in Fig. 5b. Comparing these two his-
tograms, we can see that preferring low-default countéespasults
in issuing credit to agents nearby in the social networkhédligh
neighbors in the network have the saprér probabilities of de-
fault as distant agents, the superiority of information wttithem

means that nearby agents are much more prevalent among thosE

with lowest posterior probabilities. The strategPT produces a
similar histogram t®P, as it also relies heavily on beliefs about de-
fault probability, adding just a small factor for trade \alihat acts
as a tie-breaker. The remaining six strategies are influenoly
slightly or not at all by the social network, and thereforéibk
histograms (Fig. 5¢) much like the underlying distanceritigtion
shown in Fig. 5a.

4.2.2 Global Risk Model

The results of equilibrium analysis under global risk foctea
combination of default probability distribution, and buysirplus

are shown in the top half of Fig. 6. Strategies appearing iella c
are supported in some symmetric mixed-strategy Nash bgjuiti

of the corresponding game. Each circled strategy is a syriunet
pure-strategy Nash equilibrium.

Default probability is clearly the most relevant criterionthe
global risk setting. At least one @P andDT, and often both, is
supported in an equilibrium of all settings except the butleft,
which has the lowest transaction values and highest degfeniita-
bilities (where the empty network is the unique equilibrjuffihat
the empty network is among the equilibria in all three envinents
with low transaction values is an indication of the impocd=rof
network effects: it is much more profitable to participata icredit
network if many other agents do so as well. We also observe the
importance of coordinating on a centralized, star-likevoek, in
thatDP andIX both appear as symmetric pure strategy equilibria.
This point is reinforced by the poor performance of the stgis
relying primarily on transaction valugVv, TP, andTD.
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2 05| - . . i .

§ DT DT DT
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H DP IX)(DP

o 0.1 - . . ) -
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9°ba'|'gt§‘f'r:f°de' 112 3 1110
(complete info) avg. default probability
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(incomplete info) prior default probability

igure 6: Strategies appearing in symmetric Nash equalitorisix
global risk environments (top), and six graded risk envinents
(bottom). Circled strategies in a cell constitute pure sytin
equilibria of the associated game.

4.2.3 Graded Risk Model

The bottom half of Fig. 6 shows equilibrium analysis undexdgd
risk. DP, which appears in equilibria of nearly all global risk set-
tings is less prevalent in graded risk equilibria, indicgtihat it
owes much of its success to its function as a coordinatioicdev
TD, on the other hand, continues to perform well, making clear



that default probability is still a relevant criterion tortider. In
the low-value settings, it is unsurprising that the emptiymoek is
more likely to arise, because agents have less informatiaitadle.
When defaults are sufficiently rare, a centralized networknfall
agents playindX is again an equilibrium. The case of high value
and low default probability shows a multiplicity of equitil, in-
cluding the only appearance of one of the strategies focosed

trades:TD.

The clear messages from our empirical game simulations are
twofold. First, coordinating on a centralized, star-liletwork can
be very beneficial, when such coordination is feasible. Becoet-
work effects are very strong: none of the strategies thgtrehvily
on transaction-related criteria perform well; insteadrag¢end to
play strategies likd D, IX, andDP that result in a high likelihood
of remaining connected to most of the network in equilibrium

5. CONCLUSION

Our investigation of strategic issues in the formation efiitr net-
works characterizes, in various settings, the nature diuiegfcy of
credit networks that are formed by self-interested agarts@mously
choosing how to issue credit among available counterparte
analysis employs game-theoretic solution concepts, graglan
theoretical examination of analytic models, as well as &ithon-

based exploration of extended environments.

Under dichotomous risk, if only bilateral transactionsaltewed,
we show that the formation game is a potential game. Moreover
for many transaction size distributions, we show that agjartli-
ties are concave, and consequently, every Nash equilibofutine
game maximizes social welfare. More interestingly, we stobw
that the Nash equilibria are equivalent in a much strongesese
all Nash equilibria areycle-reachabld6] from each other, which
implies that the sequences of transactions that can be gagdpo
from each equilibrium network are identical. However, wives
allow transactions over longer paths, best-response dgsamay

not converge, and the price of anarchy is unbounded.

Under a model of global risk, if agents are limited to extend
credit to at most one other agent, we prove that the networksed
in equilibrium have a star-like structure. Although thecprf an-
archy is unbounded, myopic best response quickly convergas
social optimum. Even when agents are allowed to extend tcredi
to multiple agents, we show using empirical game simulatiiat
non-empty equilibria tend to be star-like. We also analyaerl
graded risk settings, and find that agents coordinate inréikta
structure only when defaults are relatively unlikely, atldeswise,
credit links tend to be issued over short social distancefcming

to the locality of information.
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