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Latency arbitrage in fragmented markets:
A strategic agent-based analysis

Elaine Waha,1,∗ and Michael P. Wellmanb

aIEX Group, Inc., New York, NY, USA
bComputer Science and Engineering, University of Michigan, Ann Arbor, MI, USA

Abstract. We study the effect of latency arbitrage on allocative efficiency and liquidity in fragmented financial markets. We
employ a simple model of latency arbitrage in which a single security is traded on two exchanges, with price quotes available
to regular traders only after some delay. An infinitely fast arbitrageur reaps profits when the two markets diverge due to this
latency in cross-market communication. Using an agent-based approach, we simulate interactions between high-frequency
and zero-intelligence trading agents. From simulation data over a large space of strategy combinations, we estimate game
models and compute strategic equilibria in a variety of market environments. We then evaluate allocative efficiency and
market liquidity in equilibrium, and we find that market fragmentation and the presence of a latency arbitrageur reduces
total surplus and negatively impacts liquidity. By replacing continuous-time markets with periodic call markets, we eliminate
latency arbitrage opportunities and achieve further efficiency gains through the aggregation of orders over short time periods.
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1. Introduction

The predominantly electronic infrastructure of the
U.S. stock market has come under intense scrutiny in
recent years, during which several major technology-
related disruptions have roiled the markets. In August
2013, for example, an overflow of market quotes
caused a three-hour halt in trading at Nasdaq
(De La Merced, 2013) and, in a separate inci-
dent, Goldman Sachs unintentionally flooded U.S.
exchanges with a large number of erroneous stock-
option orders (Gammeltoft and Griffin, 2013).
Nasdaq’s computer systems were similarly over-
whelmed during the Facebook IPO on May 18,
2012, when a surge in order cancellations and
updates delayed the opening of the shares for trad-
ing (Mehta, 2012). Even more disruptive were the
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massive losses incurred by Knight Capital due to
software misconfiguration in August 2012 (Securities
and Exchange Commission, 2013) and the so-called
“Flash Crash” of May 6, 2010, during which the
Dow Jones Industrial Average exhibited its largest
single-day decline (approximately 1,000 points)
(Bowley, 2010).

These episodes of market turbulence are symp-
tomatic of today’s trading landscape, a fragmented
and complex system of interconnected electronic
markets that compete with each other for order flow.
There are over 40 trading venues for stocks in the U.S.
alone (O’Hara and Ye, 2011). The majority of activity
on these markets comes from algorithmic trad-
ing, which employs computational and mathematical
tools to automate the process of making trading deci-
sions in financial markets. This type of trading has
been the subject of much discussion and research,
particularly regarding its benefits and drawbacks
(Government Office for Science, London, 2012).

In trading, latency refers to the time needed to
receive, process, and act upon new information.
Algorithmic trading practices that exploit latency
advantages in market access and execution in order to
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enhance profits are collectively called high-frequency
trading (HFT), and have been estimated to account
for over half of daily trading volume (Cardella et al.,
2014). There is no accepted formal regulatory def-
inition of HFT, and the term itself encompasses a
broad array of strategies (Aldridge, 2013). General
attributes of HFT include high daily trading vol-
ume, extremely short holding periods (on the order of
milliseconds or less), and liquidation rather than car-
rying significant open positions overnight (Wheatley,
2010). Proponents of high-speed trading posit that
HFT activity reduces trading costs for market partic-
ipants. Others argue that these traders harm investors
and that practices to reduce latency contribute to a
wasteful latency arms race, in which HFTs compete
to access and respond to information faster than their
competitors (Goldstein et al., 2014).

Trading on these latency advantages has been
estimated to account for $21 billion in profit per
year (Schneider, 2012)1. High-frequency traders gain
latency advantages through various means. One
method is co-location, in which HFT firms pay a
premium to place their computers in the same data
center that houses an exchange’s servers. Many HFT
firms also pay for direct data feeds in order to receive
market data and market-moving information faster
than non-HF investors. However, firms may spend
millions of dollars to build a new, faster communi-
cation line only to be made obsolete by technology
improvements that shave off additional milliseconds.
One example of this rapid antiquation is Spread Net-
works’ fiber optic cable, which was deprecated less
than two years after its completion by the introduc-
tion of a network reliant on microwave beams through
air (Adler, 2012). According to estimates by the Tabb
Group, firms spent approximately $1.5 billion in 2013
on technology to reduce latency (Patterson, 2014).

The HFT strategy we examine here is latency arbi-
trage, where an advantage in access and response
time enables the trader to book a certain profit.
Arbitrage is the practice of exploiting disparities in
the price at which equivalent goods can be traded in
different markets. Such disparities can arise in finan-
cial markets in several ways, and the term “latency
arbitrage” has been applied to a variety of prac-
tices that exploit speed advantages. Cross-market
latency arbitrage opportunities are quite prevalent

1Profit figures are considerably more uncertain than volume
estimates. Kearns et al. (2010) present an interesting approach to
derive an upper bound on HFT profits. Presumably the billions
HFT firms invest annually in technology and infrastructure (Adler,
2012) represent a lower bound on gross trading profit.

across U.S. stock exchanges, with total potential
yearly profit in 2014 exceeding $3 billion (Wah,
2016). In this study, we model a specific type of
latency arbitrage (also termed slow-market arbitrage
(Lewis, 2014)) in which disparities arise from the
fragmentation of securities markets across multiple
exchanges. This fragmentation has been a major
trend, particularly in the United States over the last
decade (Arnuk and Saluzzi, 2012). U.S. securities
regulations have attempted to mitigate the effect of
fragmentation through the formulation of Regulation
NMS, which mandates cross-market communication
and the routing of orders for best execution (Blume,
2007; Securities and Exchange Commission, 2005).
Orders stream into exchanges, which are required
to feed summary information about their best buy
and sell orders to an entity called the Security
Information Processor (SIP). The SIP continually
updates public price quotes called the “National Best
Bid and Offer” (NBBO).

We illustrate this process and the potential for
latency arbitrage in Fig. 1. Given order information
from exchanges, the SIP takes some finite time, say δ

milliseconds, to compute and disseminate the NBBO.
A computationally advantaged trader who can pro-
cess the order stream in less than δ milliseconds
can simply out-compute the SIP to derive NBBO*,
a projection of the future NBBO that will be seen
by the public. By anticipating future NBBO, an HFT
algorithm can capitalize on cross-market disparities
before they are reflected in the public price quote,
preemptively outbidding incoming orders when pos-
sible to pocket a small but sure profit. Naturally this
precipitates an arms race, as an even faster trader can
calculate an NBBO** to see the future of NBBO*,
and so on.

The latency arms race as sketched above is fun-
damentally an outgrowth of continuous trading: a

SIP

Order feedsmilliseconds

NBBO*

NBBO

Fig. 1. Exploitation of latency differential. Rapid processing of
the order stream enables private computation of the NBBO before
it is reflected in the public quote from the SIP.
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property of mechanisms that distinguish precedence
according to arbitrarily small time differences. By
moving to a discrete-time model—which introduces
short but finite clearing intervals (as in a frequent
call market, or frequent batch auction)—we can neu-
tralize small disparities in information access and
response time. A driving question of this work is how
such a mechanism-design intervention would affect
market performance.

More broadly, we seek to understand not
only the effects of latency arbitrage on mar-
ket efficiency and liquidity, but also the interplay
between fragmentation, clearing mechanisms, and
latency arbitrage strategies in producing this per-
formance. Such questions about HFT implications
are inherently computational, as the very speed
of operation renders details of internal market
operations—especially the structure of communi-
cation channels—systematically relevant to market
performance. In particular, the latencies between
market events (transactions, price updates, order
submissions) and when market participants observe
these activities become pivotal, as even the small-
est latency differential can significantly affect trading
outcomes.

Previous work on the effects of high-frequency
trading and market structure has relied primarily on
either analytical models or examination of histori-
cal order and transaction data. Historical market data
alone is insufficient as it cannot be used to answer
counterfactual questions about the impact of modify-
ing strategies or market rules. Analytical models, on
the other hand, can capture essential aspects of mar-
ket structure, but would require stifling complexity
to specify the interactions between multiple entities
or the precise timing of event occurrences (such as
the propagation of information between markets and
participants)—at which point a closed-form solution
or any other reasoning would be rendered infeasible
or otherwise unhelpful. Lacking suitable data to study
these questions empirically2 we pursue a simulation
approach.

2Order activity at the temporal granularity of interest here is
generally unavailable for public research, and it is unclear whether
data on communication latencies and the end-to-end routing of
orders among brokers and exchanges is available from any source.
What high-frequency trading data does exist commercially is pro-
hibitively expensive. Moreover, even full details on conceivably
observable trading activity could not directly resolve counterfac-
tual questions, such as the response of financial markets to possible
shocks or the effects of alternative market rules and regulations.

We present a simple model that captures the effect
of latency across two markets with a single security.
Our model captures the interplay of latency and
fragmentation as well as the regulatory environment
responsible for current equity market structure, and
we quantify the effect of latency arbitrage on sur-
plus allocation as a function of latency and market
rules. Using an agent-based approach, we implement
our two-market model in a discrete-event simulation
system that explicitly models the communication pat-
terns between background investors, exchanges, and
the SIP operating in current U.S. equity markets.
We simulate the interactions between high-frequency
and background traders, and we employ empirical
game-theoretic analysis to identify equilibria under
different market conditions.

We are primarily interested in the impact on effi-
ciency of three different market features: presence of
latency arbitrage, market fragmentation, and switch-
ing to discrete-time market clearing. Therefore, we
compare allocative efficiency in equilibrium in our
two-market model with equilibrium welfare in other
models of market structure, including a consolidated
continuous double auction market and a frequent
call market. Our main finding is that in most of the
model settings studied, latency arbitrage not only
reduces profits of the background investors, but also
diminishes surplus overall—even when the profits of
LA are counted. Perhaps surprisingly, market frag-
mentation per se does not harm efficiency; in fact
some degree of fragmentation mitigates the ineffi-
cient trades that are often executed by a continuous
mechanism. The discrete-time frequent call mar-
ket eliminates latency arbitrage by construction and,
by virtue of temporal aggregation, yet more effec-
tively matches orders, producing significantly greater
surplus.

This study extends and supersedes our previous
work (Wah and Wellman, 2013). In that study, traders
employed a fixed strategy for all market configura-
tions and latency settings. The analysis presented here
employs empirical game-theoretic methods to per-
form strategy selection for traders. The qualitative
conclusions presented in the original study still hold;
the results we report here serve to confirm those main
points in a more extensive and strategically robust
evaluation.

This paper is structured as follows. In Section 2, we
discuss related work on agent-based financial mar-
kets and models of HFT and market structure. We
present the general framework for our agent-based
financial market models in Section 3. We describe
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our two-market model in Section 4, the computa-
tional approach we employ in Section 5, and our
experimental setup in Section 6. In Section 7 we
present our results, and we conclude in Section 8.

2. Related work

2.1. Agent-based financial markets

There is a substantial literature on agent-based
modeling (ABM) of financial markets (Buchanan,
2009; Chen et al., 2012; Farmer and Foley, 2009;
LeBaron, 2006), much of it geared to reproduce and
thereby explain stylized facts from empirical studies
of market behavior. For example, simulated mar-
kets have been constructed to reproduce phenomena
observed in real stock markets, such as bubbles and
crashes (LeBaron et al., 1999; Lee et al., 2011).
Because agent behavior is shaped by the market
environment, which includes interactions with other
agents over time, such models can support causal
reasoning (as in the study by Thurner et al. (2012)
establishing the effect of leverage on price volatility).
One prominent example of an agent-based financial
market is the Santa Fe artificial stock market (Palmer
et al., 1994; LeBaron, 2004). ABM has also been
used to model financial markets for applications such
as portfolio selection (Jacobs et al., 2004) and deter-
mining the distributions of order and trading waiting
times in a limit order book (Raberto and Cincotti,
2005).

2.2. High-frequency trading models

Much of the current literature on the effects of
HFT relies on the evaluation of historical order data.
Hasbrouck and Saar (2013) use Nasdaq order data
to construct sequences of linked messages describ-
ing trading strategies. They find that this low-latency
activity improves short-term volatility, spreads, and
market depth. Brogaard (2010) analyzes a 120-
stock Nasdaq dataset that distinguishes HFT from
non-HFT activity in order to assess the impact of
high-frequency trading on liquidity, price discovery,
and volatility. Prior work suggests that algorithmic
trading improves liquidity (Hendershott et al., 2011);
Angel et al. (2011) reach similar conclusions, find-
ing that the emergence of automated trading and HFT
has improved various market measures such as exe-
cution speed and spreads. Additional work suggests
a link between HFT and increased volatility (Arnuk
and Saluzzi, 2012). Foucault et al. (2015) examine

latency arbitrage opportunities in currency markets,
and provide evidence of a tradeoff between pricing
efficiency and liquidity. In another study, Baron et al.
(2012) find that some kinds of HFT activities directly
harm ordinary investors.

Others rely on theoretical analysis to determine
the optimal behavior of high-frequency traders. Avel-
laneda and Stoikov (2008) derive an optimal limit
order submission strategy for a single high-frequency
trader acting as a liquidity provider, running numer-
ical simulations to assess the agent’s performance
under varying strategies. Cohen and Szpruch (2012)
propose a single-market model of latency arbitrage
with one limit order book and two investors oper-
ating at different speeds. The fast trader employs a
strategy that determines in advance the quantity the
slow investor intends to trade, using this informa-
tion to generate a risk-free profit. Jarrow and Protter
(2012) develop a model of traders with differentials
in speed and access to information, showing that HFT
transactions can degrade price discovery, exacerbate
volatility and increase mispricings—which HF arbi-
trageurs can then exploit.

In a rare application of ABM to HFT, Hanson
(2012) finds that market liquidity and total surplus
vary directly with the number of HF traders.

2.3. Modeling market structure and clearing
rules

Several prior works seek to identify the effects
of market fragmentation and clearing rules, mainly
via anecdotal evidence elicited from historical data.
On the theoretical side, Mendelson (1987) investi-
gates the effect of consolidation versus fragmentation
of periodic call markets, without consideration of
arbitrage between the submarkets. O’Hara and Ye
(2011) use historical quote data and execution metrics
to demonstrate that market fragmentation does not
appear to harm measures such as spreads, execution
speed, and efficiency. Bennett and Wei (2006) com-
pare the execution costs of stocks that have switched
from Nasdaq to the more consolidated NYSE, find-
ing evidence that execution costs decline with order
flow consolidation. Amihud et al. (2003) examine the
response of equities on the Tel Aviv Stock Exchange
to the exercise of corporate warrants, concluding that
consolidation improves liquidity.

However, few prior studies attempt to directly
model the communication latencies arising from mar-
ket fragmentation and the resultant arbitrage oppor-
tunities, with the exception of Ding et al. (2014),
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who analyze NBBO latencies and the ability of HFTs
to generate a synthetic NBBO. They conclude that
price dislocations between the official and synthetic
NBBOs can be exploited by HFTs for profit.

Switching to a discrete-time clearing mechanism,
as in a frequent call market, has already been pro-
posed as a means to eliminate the exploitation of
latency differentials across multiple exchanges (Well-
man, 2009; Schwartz and Peng, 2013; Sparrow,
2012). Budish et al. (2013) analyze a theoretical
model of a continuous limit order book, showing
that HFT profits in equilibrium come from investors
via wider spreads and that frequent batch auctions
reduce the value of very small speed advantages.
Others have proposed variants on the frequent call
market with randomized clearing intervals (Sellberg,
2010; Industry Super Network, 2013), or randomized
batching in conjunction with pro rata trade allocation
rules, which may promote more equitable allocation
of trades among investors (Farmer and Skouras, 2012;
McPartland, 2013).

A number of other studies have focused not on the
role of call markets in mitigating the harmful effects
of HFT, but on the differences in market quality
offered in a discrete-time versus a continuous mar-
ket (Pancs, 2013; Pellizzari and Dal Forno, 2007) or
an alternative market rule such as selective delay, in
which cancellation orders are processed immediately
but all other order types have a small delay (Baldauf
and Mollner, 2014).

Empirical work on the effects of switching to peri-
odic clearing is limited and again relies largely on the
analysis of historical events (Webb et al., 2007; Kalay
et al., 2002). For example, Amihud et al. (1997) find
that switching from a daily call auction to a combina-
tion of discrete and continuous trading in the Tel Aviv
Stock Exchange is associated with improvements in
liquidity.

3. Agent-based financial market models

In this section, we present our general framework
for constructing computational agent-based financial
market models. We focus on two types of markets in
this study. The continuous double auction (CDA), in
which orders are matched as they arrive, is used in
virtually all stock markets today. This is in contrast
to a periodic or frequent call market, in which orders
are matched to trade at regular, fixed intervals (on the
order of tenths of a second). We describe these two
types of markets in Section 3.1.

Our market models are populated by background
traders, who represent investors in the market. This
is in contrast to market participants who exclu-
sively pursue trading profit. We describe the valuation
model of background traders in Section 3.2, and the
class of background-trader strategies in Section 3.3.

3.1. Market clearing mechanisms

The continuous double auction is a simple and
standard two-sided market that forms the basis for
most financial and commodities markets (Friedman,
1993). Agents submit bids, or limit orders, speci-
fying the maximum price at which they would be
willing to buy a unit of the security, or the minimum
price at which they would be willing to sell (hence,
the CDA is often referred to as a limit order mar-
ket in the finance literature). CDAs are continuous in
the sense that when a new order matches an exist-
ing incumbent order in the order book, the market
clears immediately and the trade is executed at the
price of the incumbent order—which is then removed
from the book. Orders may be submitted at any time,
and a buy order matches and transacts with a sell
order when the limits of both parties can be mutually
satisfied.

An alternative to continuous trading is a frequent
call market or frequent batch auction, in which order
matching is performed only at discrete, periodic inter-
vals (e.g., on the order of tenths of a second). A
discrete-time market facilitates more efficient trad-
ing by aggregating supply and demand and matching
orders to trade at a uniform price (Biais et al., 2005;
Gode and Sunder, 1997; Wah and Wellman, 2013).
As in the CDA, traders in the frequent call market
can arrive and submit orders at any time. The sub-
mitted limit orders remain in the order book until
executed or canceled. In a frequent call market, orders
are accumulated over a series of fixed-length clear-
ing intervals. Orders are processed in batch via a
uniform-price auction: at the end of each interval, the
market computes the aggregate supply and demand
functions based on current outstanding orders. No
trade occurs if supply and demand do not intersect.
If supply and demand intersect, the market clears at
a uniform price that best matches the aggregated buy
and sell orders, i.e., where supply equals demand.
Buy orders strictly greater than the computed price,
as well as sell orders strictly less than this price, will
execute and subsequently be removed from the order
book. If supply and demand intersect horizontally or
at a single point, there exists a unique clearing price
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for the given interval. Orders that do not trade in the
current period remain outstanding and carry over to
the next clearing interval.

A frequent call market effectively eliminates the
latency advantages of HFTs by hiding all submitted
orders within each clearing interval, as in a sealed-
bid auction. The removal of time priority within each
batch period helps ensure that standing offers can-
not be readily picked off by incoming orders, thereby
transforming the competition on speed into a compe-
tition on price. This ensures that there is no significant
advantage to receiving and responding to information
faster than other traders, because all orders within
a clearing interval are processed and matched at
the same time. Periodic clears every second or so
would be imperceptible to most investors but would
prevent the exploitation of small speed advantages,
thus curbing HFT participation in the latency arms
race.

In our implementation of these market models,
prices are fine-grained but discrete, taking values at
integer time points. Agents arrive at designated times,
and submit limit orders to their associated market(s).
Each market continually publishes a price quote con-
sisting of two parts, the BID and the ASK. Other bids
in the order book are not visible to traders. CDA price
quotes reflect the best current outstanding orders,
whereas call market quotes reflect the best outstand-
ing orders immediately following the latest market
clear. Specifically, for the CDA, BIDt is the price
of the highest buy offer at time t and ASKt is the
price of the lowest offer to sell. For the frequent call
market, BIDt corresponds to the highest outstanding
buy offer as of the most recent clear time tc, so that
BIDt = BIDt′ for any tc ≤ t′ ≤ t. Similarly, ASKt

is the lowest outstanding offer to sell as of tc. The dif-
ference between the two quote components is called
the BID-ASK spread. An invariant for both the CDA
and the call market is that BID < ASK. Otherwise,
the orders would have matched and been removed
from the order book—either immediately in the case
of the CDA or upon the clear in the frequent call
market.

3.2. Valuation model

Each background trader has a valuation for the
security in question, comprised of private and com-
mon components. The common component is defined
as follows. We denote by rt the common fundamental
value for the security at time t. The fundamental time

series is generated by a mean-reverting stochastic
process:

rt = max {0, κr̄ + (1 − κ) rt−1 + ut} .

Parameter κ ∈ [0, 1] specifies the degree to which
the fundamental reverts back to the mean r̄, and ut ∼
N (

0, σ2
s

)
is a random shock at time t.

The private component for agent i is a vector �i

representing differences in the agent’s private ben-
efits of trading given its net position, similar to the
model of Goettler et al. (2009). This private val-
uation vector reflects individual preferences in the
marginal value of the security (e.g., due to risk aver-
sion, outside portfolio holdings of related securities,
or immediate liquidity needs), as well as prefer-
ences regarding urgency to trade. The vector is of
size 2qmax, where qmax is the maximum number of
units the agent can be long or short at any time,
with

�i =
(
θ
−qmax+1
i , . . . , θ0

i , θ
+1
i , . . . , θ

qmax
i

)
.

Element θq
i is the incremental private benefit obtained

from selling one unit of the security given current
position q, where positive (negative) q indicates a
long (short) position. Similarly, θ

q+1
i is the marginal

private gain from buying an additional unit given
current net position q.

We generate �i from a set of 2qmax values
drawn independently from a Gaussian distribution.
Let θ̂ ∼ N (

0, σ2
PV

)
denote one of these drawn val-

ues. To ensure that the valuation reflects diminishing
marginal utility, that is, θq′ ≥ θq for all q′ ≤ q, we
sort the θ̂ and set the θ

q
i to respective values in the

sorted list.
Background trader i’s valuation v for the security

at time t is based on its current position qt and the
value of the global fundamental at time T , the end of
the trading horizon:

vi(t) = rT +
⎧⎨
⎩

θ
qt+1
i if buying 1 unit

θ
qt

i if selling 1 unit.

For a single-quantity limit order transacting at time
t and price p, a trader obtains surplus:{

vi(t) − p for buy transactions, or

p − vi(t) for sell transactions.

Since the price and fundamental terms cancel out
in exchange, the total surplus achieved when agent B
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buys from agent S is θ
q(B)+1
B − θ

q(S)
S , where q(i)

denotes the pre-trade position of agent i.

3.3. Background-trader strategies

There is an extensive literature on autonomous bid-
ding strategies for CDAs (Das et al., 2001; Friedman,
1993; Wellman, 2011). In this study, we consider trad-
ing strategies in the so-called Zero Intelligence (ZI)
family (Gode and Sunder, 1993).

The background traders arrive at the market accord-
ing toaPoissonprocesswith rateλBG.Oneacharrival,
the trader first withdraws its previous order (if not
transacted yet). It is then assigned to buy or sell (with
equal probability), and accordingly submits an order
to buy or sell a single unit. (Traders are randomly
reassigned to buy or to sell each time they arrive.)
Background traders are notified of all transactions and
current price quotes with zero delay, and may use this
information incomputing theirbids.Agentsmay trade
any number of times, as long as their net positions do
not exceed qmax (either long or short).

Recall that each background trader has an individ-
ual valuation for the security comprised of private
and common components, as described in the previ-
ous section. Based on this valuation, each background
trader obtains a payoff at the end of the simulation
period. This payoff is computed as the sum of the
private value of the trader’s holdings, the net cash
flow from trading, and the liquidation proceeds of
any accumulated inventory at the end-time funda-
mental value rT (i.e., the common component of the
valuation).

A ZI trader assesses its valuation vi(t) at the time
of market entry t, using an estimate r̂t of the terminal
fundamental rT . The estimate is based on the cur-
rent fundamental, rt , adjusted to account for mean
reversion:

r̂t = (
1 − (1 − κ)T−t

)
r̄ + (1 − κ)T−trt .

The ZI agent then submits a bid shaded from this
estimate by a random offset—the degree of surplus
it demands from the trade. The amount of shading
is drawn uniformly from range [Rmin, Rmax]. Specif-
ically, a ZI trader i arriving at time t with current
position q submits a limit order for a single unit of
the security at price

pi ∼
⎧⎨
⎩

U
[
r̂t + θ

q+1
i − Rmax, r̂t + θ

q+1
i − Rmin

]
if buying

U [
r̂t + θ

q
i + Rmin, r̂t + θ

q
i + Rmax

]
if selling.

We extend ZI by including a threshold parame-
ter η ∈ [0, 1], whereby if the agent could achieve
a fraction η of its requested surplus at the current
price quote, it would simply take that quote rather
than posting a limit order to the book. Setting η = 1
is equivalent to the strategy without employing the
threshold.

4. Two-market model

We present a simple model for latency arbitrage
across two markets populated by a single high-
frequency trader and multiple background traders.
We describe the specifics of this model in Section 4.1.
The valuation model and class of strategies employed
by the background investors are as described in
Sections 3.2 and 3.3, respectively. In Section 4.2,
we discuss the behavior of the latency arbitrageur.
We present an example of how a latency arbitrage
opportunity can arise in this two-market model in
Section 4.3.

4.1. Model description

Our model of latency arbitrage consists of one
security traded on two markets, each employing a
continuous double auction mechanism (Section 3.1).
The two markets are linked by a public NBBO signal
(see Fig. 2). Limit orders lodged in either market are
forwarded to the SIP, which calculates and reports an
NBBO—based on the quotes from the two markets—
with some finite delay δ. This latency reflects the time
required to receive information about activities in the
two markets and compute an updated public price
signal.

Retail and institutional investors generate limit
orders according to an evolving fundamental (driven
by news) and other private factors. Each non-HF
investor is primarily associated with one of the two
markets. An order is sent to the trader’s primary
market unless the NBBO indicates that it could be
executed in the alternate market at a price better than
that available on the primary market.

More precisely, let BIDj and ASKj , where j ∈
{1, 2}, denote the current BID and ASK quotes,
respectively, in market j. Similarly, let BIDN and
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Investors Investors

Market 1 Market 2

NBBO

SIP

Latency Arbitrageur



Fig. 2. Two-market model with one infinitely fast latency arbi-
trageur and multiple background investors. A single security is
traded on the two markets. Each background investor is associated
primarily with one of the two markets, and its order is routed to its
alternate market if and only if the NBBO quote indicates an imme-
diate execution. The latency arbitrageur has undelayed access to
both markets, so it can immediately detect arbitrage opportunities
arising from the delay in NBBO calculation.

ASKN represent the NBBO quote. Background
traders have direct access to the quotes on their pri-
mary market and the NBBO, but not to those on the
alternate market. Suppose a trader associated with
market 1 generates a limit order to buy a unit at price
p. This order is routed to market 2 if and only if p ≥
ASKN and ASKN < ASK1. Otherwise, the order
goes to market 1, the trader’s primary market. Note
that the conditions for submitting to the alternate mar-
ket entail that the trader’s order would execute there
immediately, if in fact the NBBO reflects the cur-
rent global state. If the order is routed to the primary
market, it may execute right away (if p ≥ ASK1);
otherwise, it is added to market 1’s order book. The
rule for routing sell orders is analogous.

The latency arbitrageur in this model can deter-
mine the best prices in each market before the NBBO
updates, due to its ability to receive and process
order streams faster than background investors. It
can thus directly detect an arbitrage situation, which
occurs whenever BID1 > ASK2 or BID2 > ASK1.
We assume the arbitrageur can respond infinitely fast,
so it immediately takes the profit from such arbitrage
situations by submitting executable orders to the two
markets. Note that the arbitrage opportunity can arise
only to the extent that the NBBO information is out
of date. If the SIP were able to compute and publish
the NBBO with zero latency, then a new order would
always be routed correctly and would thereby exe-
cute immediately if there were a matching order in
either market. Any finite delay, however, opens the
possibility that an order is routed to the investor’s
primary market, despite there being a matching order

in the alternate market that had arrived too recently
to be admitted in the available NBBO. An out-of-
date NBBO can also cause an order to be improperly
routed to the alternate market despite it no longer
matching there, even if there is a matching order in
the primary market.

4.2. Latency arbitrageur

The latency arbitrageur (LA) in the two-market
model operates as follows. LA first obtains current
price quotes in both markets, then checks whether an
arbitrage situation exists. We denote the best price
available to sell at by

BID∗ ≡ max{BID1,BID2},
and similarly the best price available to buy is

ASK∗ ≡ min{ASK1,ASK2}.
Given a threshold α ≥ 0, LA deems the current

state a worthwhile arbitrage opportunity if and only if
BID∗ > (1 + α) ASK∗. To execute the arbitrage, LA
submits orders exploiting the price differential to the
two markets simultaneously. Under our assumption
that LA is infinitely fast, bidding any price at or better
than the current quote would lead to successful execu-
tion at the quoted prices. In our implementation, LA
calculates the midpoint m between BID∗ and ASK∗,
then submits an order to buy at 	m
 to the market with
the better ASK price and an order to sell at price �m�
to the market with the better BID price. LA surplus
(i.e., profit) for these trades is BID∗ − ASK∗.

4.3. Example

Figure 3 illustrates how a latency arbitrage oppor-
tunity may arise in our two-market model. At time t,
the NBBO quote is BIDN = 104 and ASKN = 110.
Consider background trader i, who wishes to sub-
mit a sell order at 105 to market 1, its primary
market. To determine the order routing, BID1 is
compared with the NBBO. As BIDN > BID1, the
alternate market appears to be superior. However,
a sell offer at 105 would not transact immediately
(since BIDN = 104), so agent i’s order is routed to
market 1. At the beginning of time t + 1, for latency
δ > 1, the SIP has not yet updated the NBBO to
include the order submitted at time t. Thus, the NBBO
available to background investors is out of date: the
correct quote would be (104, 105), but the NBBO
at time t + 1 is still (104, 110) and matches ASK2
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Fig. 3. Emergence of a latency arbitrage opportunity over two time steps in the two-market model. All orders are for single-unit quantities. A
red, bolded price highlights a discrepancy between the actual market state and the NBBO, represented in the diagram as

(
BIDN, ASKN

)
.

At time t, the NBBO is up to date. Background trader i wishes to sell at price 105. Since BIDN < 105 (which indicates non-immediate
execution), the investor’s order is routed to market 1. At time t + 1, the NBBO is out of date, as the SIP updates the public quote with some
delay δ. Background trader i + 1 wishes to buy at 109; based on the NBBO, its order is routed to market 2, its primary market. (Had its order
been routed to market 1, its bid would have transacted immediately.) The submission of its order to the inferior market opens up an arbitrage
opportunity between the two markets (BID2 > ASK1), which LA immediately exploits for a guaranteed profit.

in market 2, incoming agent i + 1’s primary market.
Consequently, agent i + 1’s buy order at price 109 is
routed to its primary market. At this point, BID2 (at
price 109, submitted by agent i + 1) exceeds ASK1

(at price 105, submitted by agent i), which defines
an arbitrage opportunity. Since LA is infinitely fast,
it capitalizes on this disparity by submitting bids to
buy at 107 in market 1 and sell at 107 in market 2,
realizing a profit of 4.

5. Computational approach

To answer questions regarding the interplay
between trader behavior and market structure,
we employ a computational approach that com-
bines agent-based modeling (ABM), simulation,
and equilibrium computation. In ABM, autonomous
agents interact dynamically based on algorithmic
rules. These rules govern each agent’s actions and
responses, but do not explicitly define or specify
aggregate outcomes; instead, system-level phenom-
ena are a consequence of collective agent behavior.
We simulate interactions between agents in a vari-
ety of market environments to study the effect of
market structure and trader strategies on market
performance. We present our simulation system in
Section 5.1.

Using trader performance assessed from simu-
lation runs, we employ game-theoretic analysis to
evaluate traders’ strategic interactions with each other

under a variety of market settings. We focus on trader
behavior in equilibrium, when all market participants
are best responding to each others’ strategies in order
to optimize their own gains from trade. Equilibrium
outcomes offer a basis for predicting agents’ actions
taking account of their strategic decision making. We
explore various market scenarios and environments
in order to characterize trader behavior in equilib-
rium under different market conditions. We describe
the methodology we employ to identify equilibria in
Section 5.2.

In order to mitigate the stochasticity in our sim-
ulations and reduce sampling error, we collect large
numbers of observations for each environment set-
ting and trader population of interest. We utilize the
EGTAOnline infrastructure (Cassell and Wellman,
2013) to conduct and manage our experiments, and
we run our simulations on the high-performance com-
puting cluster at the University of Michigan.

5.1. Discrete-event simulation

The financial markets we study are stochastic,
dynamic systems with discrete states that change
in response to communication events. These events
occur at high frequency, even on the order of
microseconds. To faithfully model such systems
in simulation, ensuring the unambiguous timing of
agent and market interactions is paramount. This
necessitates fine-grained modeling at the level of
communication.
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We therefore design our system based on principles
of discrete-event simulation (DES), which affords the
precise specification of temporal changes in system
state. In the DES framework, a simulation run is mod-
eled as a sequence of events (Banks et al., 2005).
Each event is an instantaneous occurrence that marks
a change to the system state at a given time, and
events are maintained in a queue ordered by time of
occurrence.

Our financial market simulation system, based on
that described in detail by Wah and Wellman (2013),
affords sufficient versatility to model a wide range
of market environments, including variform popu-
lations of market participants, as well as different
market structures (e.g., varying in the number of mar-
kets or types of market mechanisms employed). The
simulator has been extended by other members of
the Strategic Reasoning Group at the University of
Michigan and employed in several other studies.

5.2. Empirical game-theoretic analysis

We model the strategic situation of background
traders as a normal-form game, where each player
(trader) has a set of available strategies, and the
outcome is a function of the joint choice of strate-
gies (the strategy profile) and stochastic events
in the market environment. Players may select
from the strategy set deterministically (adopting a
pure strategy) or according to a probability distribu-
tion (a mixed strategy). The support of a strategy is
the set of pure strategies played with nonzero proba-
bility (hence, a pure strategy has singleton support).
The game model maps strategy profiles to vectors of
payoffs, representing the utility each player obtains
in expectation over the profile outcomes.

The simulation system discussed in the previ-
ous section takes as input a strategy profile and
generates as output a sample outcome. Through a pro-
cess of empirical-game theoretic analysis (EGTA)
(Wellman, 2006) we systematically generate samples
in this way to estimate a model of the overall game.
Given the estimated game model, we can apply stan-
dard solution concepts to characterize or predict agent
behavior. We focus here on Nash equilibrium (NE),
in which each player selects a strategy maximizing
its expected payoff, given the strategies of the other
players.

In this study, we model the market as a symmet-
ric game, which means that each player has the same
available strategy set, and each has the same pay-
off as a function of its own strategy and the set of

other-agent strategy choices. In other words, payoffs
depend only on the number of agents playing each
strategy, not on the identities of the agents playing
them. We also focus attention on symmetric NE, in
which each player selects the same (possibly mixed)
strategy in equilibrium. Note that even for a symmet-
ric profile, on any given run the players will generally
choose different strategies (a consequence of inde-
pendent selection from the mixture), and will also
generally have heterogeneous private valuations.

5.3. EGTA process

To analyze a game, we apply EGTA in an iterative
manner, interleaving exploration of the profile space
with analysis of the empirical game model induced
by average payoffs in simulation. We start by simu-
lating all the symmetric pure-strategy profiles, where
a single strategy is shared by all players. Exploration
then spreads through their neighbors, that is, those
profiles related by single-agent deviations.

Observed payoffs from simulation runs of a given
profile are added incrementally to the empirical
game’s payoff matrix. For this reason, the game is
incomplete at any point during the EGTA process,
as some profiles have been empirically evaluated
whereas others have not. Each update to the empirical
game’s payoff matrix generates an intermediate game
model. As payoffs from simulation are incorporated
into the empirical game, we analyze each succes-
sive intermediate game model by computing (mixed)
equilibria for each complete subgame. A (normal-
form) subgame is the game obtained by restricting the
set of strategies, and a complete subgame is defined as
a subgame for which all profiles have been evaluated
by simulation. The symmetric Nash equilibria of the
complete subgames are candidates for equilibria in
the full game. If we can identify a strategy in the full
strategy set that beneficially deviates from the can-
didate, we say the candidate is refuted. A candidate
profile is confirmed as an NE when all possible devi-
ations have been evaluated, and none are beneficial.
We confirm or refute each candidate by evaluating
deviations to strategies outside their subgames. If a
candidate is refuted, we construct a new subgame by
adding the best response to its support, and proceed
to explore the corresponding subgame.

We simulate additional profiles for a game until we
have confirmed at least one symmetric NE, evaluated
every pure-strategy symmetric profile, and pursued
with some degree of diligence every equilibrium can-
didate encountered. More specifically, we continue to
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refine the empirical game with additional simulations
until the following conditions are met:

1. at least one equilibrium is confirmed,
2. all non-confirmed candidates are refuted (up to a

threshold support size), and
3. for all refuted candidates (up to the threshold sup-

port size), we have explored subgames formed
by adding the best response to the candidate’s
support.

When this process reaches quiescence, we consider
the search to have satisfied the diligence requirement.

The procedure described above seeks to either con-
firm or refute the equilibrium candidates detected in
our exploration of the strategy space. As we are not
able to exhaustively search the entire profile space,
however, additional qualitatively distinct equilibria
are always possible. In addition, the equilibria we find
are subject to refutation by other strategies outside
the specified set. Our search process described above
attempts to evaluate all promising equilibrium can-
didates (e.g., by exploring subgames extending the
support of a refuted candidate with the best response),
but identifying these is not guaranteed.

5.4. Game reduction

Even with a moderate number of players, the
game size (number of possible strategy profiles)
grows exponentially with the number of players
and strategies, rendering analysis of the full game
computationally infeasible. As such, we apply aggre-
gation to approximate the many-player games as
games with fewer players: We employ the technique
of deviation-preserving reduction (DPR) developed
by Wiedenbeck and Wellman (2012) to construct a
reduced-game approximation of the full game.

DPR preserves the payoffs from single-player, uni-
lateral deviations, and maintains in the reduced game
the same proportion of opponents playing each strat-
egy as in the full game. In a deviation-preserving
reduced game, each player views itself as controlling
one full-game agent and views the other-agent profile
in the reduced game as an aggregation of all other
players in the full game. Although the equilibrium
approximations obtained via DPR are not guaran-
teed estimates, DPR has been shown to produce
good approximations in other games (Wiedenbeck
and Wellman, 2012).

DPR defines reduced-game payoffs in terms of
payoffs in the full game as follows. Consider first
an N-player symmetric game, reduced to a k-player

game, for k < N. The payoff for playing strategy s1 in
the reduced game, with other agents playing strate-
gies (s2, . . . , sk), is given by the payoff of playing
s1 in the full N-player game when the other N − 1
agents are evenly divided (N−1

k−1 each) among strate-
gies s2, . . . , sk.

6. Experiments

To isolate the ramifications of market frag-
mentation, we consider two consolidated market
configurations in addition to the two-market model:
a CDA and a frequent call market. Recall that in
contrast to a continuous-time market, clearing in a
frequent call market takes place at designated inter-
vals (Section 3.1). A frequent call market eliminates
latency arbitrage opportunities, as the periodic clear-
ing mechanism makes it impossible to gain or exploit
informational advantages over other market partici-
pants within the clearing interval.

In exploring the relationship between trader behav-
ior and market structure, we are interested in the
following performance characteristics:

Allocative efficiency. Total surplus (welfare) is our
key measure of market performance. Welfare indi-
cates how well the market allocates trades according
to underlying private valuations.

Liquidity. Markets are liquid to the extent they
maintain availability of opportunities to trade at
prevailing prices. Two liquidity-related metrics are
fast execution and tight BID-ASK spreads. We
measure execution time by the interval between order
submission and transaction for orders that eventually
trade. Execution time is potentially important to
investors for many reasons, including the risk of
changes in valuation while an order is pending,
the effect of transaction delay on other contingent
decisions, and general time preference. We also
measure spread, which is the distance between prices
quoted to buyers and sellers (Section 3.1).

Our experiments (Table 1) evaluate a number of
market features, defined by different combinations
of market configurations:

� Presence of latency arbitrage: Two-market
configurations with or without LA.

� Market fragmentation: Two-market configu-
rations versus continuous one-market (consoli-
dated) configuration.
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Table 1
Experimental design for evaluating different market features

Features Market configurations
2M (LA) 2M (no LA) CDA Call

Latency arbitrage + +
Market fragmentation + + +
Discrete-time clearing + +

Each row of the table describes the market configurations included
(as indicated by the plus symbol) in evaluating a given market
feature. The four market configurations are the two-market model
(2M) both with and without LA, the consolidated CDA, and the
frequent call market.

� Market clearing rules: One-market configu-
rations with continuous (CDA) or discrete-time
(call) clearing. To facilitate direct comparison,
in each run we set the clearing interval of the
call market to equal the NBBO update latency.

6.1. Environment settings

We evaluate and compare the performance of
the four market structure configurations (two-market
model with and without LA, CDA, and frequent call
market) within three distinct environments. For the
fragmented cases, an equal proportion of background
traders is assigned primary affiliation with each mar-
ket in a model. In the consolidated call market, orders
transact at a uniform price each time the market
clears; this price is computed to best match supply
and demand (Section 3.1).

In defining our environments, we selected envi-
ronment parameters that generate sufficient arbitrage
opportunities and also replicate the original findings
for fixed-strategy, non-equilibrium comparisons from
our previous study (Wah and Wellman, 2013). To do
so, we explored a number of environments, varying
the number of traders, trading horizon length, degree
of mean reversion, and variance in both the funda-

Table 2
ZI strategy combinations included in empirical

game-theoretic analysis

Rmin Rmax η

0 125 1
0 250 1
0 500 1
250 500 1
0 1000 1
500 1000 0.4
500 1000 1
0 1500 0.6
1000 2000 0.4
0 2500 0.4
0 2500 1

mental and private values. In these runs, all traders
employed a fixed strategy with η = 1, similar to the
agents in our previous study. We selected the environ-
ments reproducing the qualitative effects previously
observed as the starting point for the extended strate-
gic analysis of the current study.

The threshold α for LA is fixed at a small value
such that any possible price difference is sufficient
for the arbitrageur to exploit. We set qmax = 10, mean
fundamental value r̄ = 105, and the variance parame-
ters σ2

PV = 5 × 106 and σ2
s = 5 × 106. All bids have

single-unit quantities, and we assume zero transac-
tion costs. Background traders play strategies from
the set listed in Table 2.

The environments differ in number of background
traders (N), background-trader (re)entry rate (λBG),
value of the mean-reversion parameter (κ), and time
horizon (T ). For each market configuration in an envi-
ronment, we explore a range of latency settings, with
a minimum difference (or order of magnitude) of

δ ∈ {10, 100}. The configurations of parameter set-
tings are listed in Table 3. The arrival rate parameter
is either λBG = 0.05 or λBG = 0.005; each ZI agent
arrives, on average, every 20 or 200 time steps.

6.2. Empirical games

We examine 23 empirical games within envi-
ronment 1, which cover the four market con-
figurations across 8 settings of latency δ ∈
{0, 100, 200, 300, 400, 600, 700, 900}. For environ-
ment 2 we include 8 empirical games (δ ∈
{0, 50, 100}), and examine 14 games within envi-
ronment 3 (δ ∈ {0, 25, 50, 75, 100}). Table 4 lists all
45 empirical games across the three market environ-
ments. The games in a given environment include
one single-market CDA game (which is independent
of latency), and one game for each of the other three
market configurations (two fragmented cases and one
with periodic clears) per latency setting simulated.
At latency 0, the frequent call market is equivalent to
the CDA, and the two models with fragmentation are
equivalent as there are no arbitrage opportunities at
zero latency.

Table 3
Parameter settings for the three market environments

Environment N λBG κ T 
δ

1 24 0.05 0.05 15000 100
2 238 0.0005 0.02 10000 10
3 58 0.0005 0.02 5000 10
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Table 4
Empirical games across the three market environments

Environment 1 Environment 2 Environment 3
Configuration Latency Configuration Latency Configuration Latency

CDA – CDA – CDA –
2M 0 2M 0 2M 0
2M (no LA), 2M (LA), Call 100 2M (no LA), 2M (LA), Call 50 2M (no LA), 2M (LA), Call 25
2M (no LA), 2M (LA), Call 200 2M (no LA), 2M (LA), Call 100 2M (no LA), 2M (LA), Call 50
2M (no LA), 2M (LA), Call 300 2M (no LA), 2M (LA), Call 75
2M (no LA), 2M (LA), Call 400 2M (no LA), 2M (LA), Call 100
2M (no LA), 2M (LA), Call 600
2M (no LA), 2M (LA), Call 700
2M (no LA), 2M (LA), Call 900

The empirical games for each environment include a consolidated CDA, which is independent of latency, and one game at each latency
setting for the other three market configurations. At latency 0, the fragmented models are equivalent to the CDA, as there are no arbitrage
opportunities. Latency here with regards to the frequent call market indicates the length of the clearing interval.

Table 5
Overview of experimental results

Feature Section Effect on market efficiency Effect on liquidity

Latency arbitrage 7.1,7.3 Generally degrades efficiency, but increased bid
shading in low mean reversion environments
alleviates inefficiencies caused by LA

LA exacerbates spreads, and execution times
vary by environment based on bid shading in
equilibrium

Market fragmentation 7.2,7.3 Can benefit continuous markets by admitting
fewer inefficient trades (due to vagaries of the
arrival sequence of orders), but LA defeats
this benefit

Execution times vary by environment, with
consolidation improving liquidity in the
fragmented model without LA when traders
do not shade more

Discrete-time clearing 7.4 Significantly improves surplus across all
environments

Increases execution times but effect is fairly
small in clock time if market clears occur
frequently, such as every second

We compare the equilibria found in the empir-
ical games according to the experimental design
described in Table 1 to evaluate the effect of latency
arbitrage, market fragmentation, and batching on
market efficiency and liquidity.

The strategic situations for each market structure
are modeled as symmetric games (Section 5.2). We
apply deviation-preserving reduction (Section 5.4)
to generate an approximation of the full game
with fewer players. Specifically, we estimate 4-
player reduced games from full games with N ∈
{24, 238, 58}3 players.

7. Results

We find in these settings that the presence
of a latency arbitrageur reduces total surplus
(Section 7.1) and has a mixed effect on market

3With the exception of environment 1, the number of players
N in the full game and the number of reduced-game players k are
selected to ensure that the DPR definitions result in integer numbers
of players. See the original paper by Wiedenbeck and Wellman
(2012) for the complete definition of the number of reduced-game
players when divisibility does not hold.

liquidity (Section 7.3). Eliminating fragmentation
can improve surplus (Section 7.2) and execution
metrics (Section 7.3). Replacing continuous mar-
kets with frequent call markets eliminates latency
arbitrage opportunities and achieves substantial effi-
ciency gains in all three environments (Section 7.4).
Our results are summarized in Table 5.

We identified 1–3 equilibria for each of the 23
games in environment 1 (Tables 6 and 7), the 8 games
in environment 2 (Tables 8 and 9), and the 14 games
in environment 3 (Tables 10 and 11). For each equi-
librium, we estimated background-trader surplus, as
well as LA profit if applicable, by sampling 500
profiles according to the equilibrium mixture, and
running 100 simulations per sampled profile (50,000
full-game simulations in total).

7.1. Effect of LA on market efficiency

Figure 4 shows the total surplus, for the consol-
idated CDA and the two-market model with and
without a latency arbitrageur, over multiple latency
settings in the three environments. The total sur-
plus of the two-market model without LA, as well
as that of the single CDA market (an unfragmented
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Fig. 4. Total surplus in the two-market (2M) model, both with and without a latency arbitrageur, and in the consolidated CDA market, for
the three environments. In the two-market model with LA, both the total surplus (ZI + LA) and background-trader surplus (ZI only) are
plotted. Each point reflects the average over 50,000 simulation runs of the maximum-welfare equilibrium for each market configuration and
latency setting.
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Fig. 5. Welfare differences that arise from changes in order
sequencing in continuous markets. The order book initially has
two sell orders. Two buy orders arrive, with different sequencing,
over the course of two time steps. In the top scenario, the buy
order at price 9 arrives before the buy order at 15, resulting in
total surplus of 5 from two trades (assuming traders submit orders
priced at their valuations). In the bottom scenario, the buy order at
price 15 arrives first, which results in a more efficient transaction
(with a higher surplus of 7) than the alternate scenario. Each pair
of green circles indicate orders that have matched and traded at a
given moment in time.

continuous-time market), generally exceeds that of
the two-market model with LA, whether or not the
profits of LA are counted. This holds across the three
environments. In other words, the latency arbitrageur

takes surplus away from the background investors,
and the amount it deducts exceeds the gross trading
profit it accrues.

The intuition behind this result lies in differences
in the orders selected to trade. Figure 5 demonstrates
how changes in the order arrival sequence may lead
to different levels of surplus. A continuous market
will match two orders to trade immediately, regard-
less of whether this transaction improves allocative
efficiency. The LA, by matching orders across the two
fragmented markets, is prone to facilitate some ineffi-
cient trades that would not execute in the two-market
model without latency arbitrage.

In environment 1, LA significantly degrades effi-
ciency in the two-market model, and total LA profit
accounts for half of aggregate surplus once nonzero
latency is introduced. Environments 2 and 3, how-
ever, have reduced mean reversion, which increases
background traders’ risk of adverse selection and hav-
ing the LA pick off their standing orders. As a result,
background traders in these two environments shade
more in response to the LA. This can be seen by higher
Rmid values in the NE found. Prior work by Zhan
and Friedman (2007) has shown that strategically
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Table 6
Symmetric equilibria for environment 1, N = 24

Model Latency Surplus Profit Rmid η

CDA – 10114 – 1298 0.458
CDA – 10383 – 1377 0.4
2M 0 11807 – 1250 0.4
2M 0 11393 – 1034 0.506
Call 100 13471 – 682 0.695
2M (no LA) 100 9400 – 1439 0.4
2M (no LA) 100 10373 – 1008 0.4
2M (LA) 100 5919 3487 1266 0.4
Call 200 13308 – 687 0.703
2M (no LA) 200 10621 – 1144 0.4
2M (LA) 200 6358 3164 1420 0.4
Call 300 13107 – 721 0.679
2M (no LA) 300 10386 – 1402 0.4
2M (no LA) 300 11244 – 913 0.4
2M (LA) 300 6398 3224 1414 0.4
Call 400 13004 – 383 1
Call 400 12771 – 640 0.747
Call 400 12686 – 460 0.961
2M (no LA) 400 10438 – 1399 0.4
2M (LA) 400 6130 4018 1080 0.4
Call 600 12932 – 321 1
Call 600 12403 – 704 0.76
Call 600 12526 – 675 0.701
2M (no LA) 600 10182 – 750 0.4
2M (no LA) 600 11128 – 845 0.4
2M (LA) 600 7459 4349 1257 0.429
2M (LA) 600 6457 4460 932 0.4
2M (LA) 600 6509 3276 1411 0.429
Call 700 12910 – 294 0.957
Call 700 12868 – 287 0.958
2M (no LA) 700 9138 – 1343 0.442
2M (no LA) 700 11302 – 881 0.4
2M (LA) 700 5256 2958 1453 0.4
Call 900 12613 – 251 1
2M (no LA) 900 8641 – 1459 0.498
2M (no LA) 900 12358 – 1250 0.4
2M (no LA) 900 10710 – 1384 0.4
2M (LA) 900 4807 3121 1403 0.426
2M (LA) 900 6819 4825 1184 0.479

Symmetric equilibria for empirical games for environment 1, one
per latency (or clearing interval) setting per market configura-
tion, N = 24, calculated from the 4-player DPR approximation.
The four market configurations are the two-market model (2M)
both with and without LA, the consolidated CDA, and the fre-
quent call market. Each row of the table describes one equilibrium
found and its average values for background-trader surplus, LA
profit, and two strategy parameters: Rmid (the midpoint of ZI range
[Rmin, Rmax]) and threshold η. Values presented are the average
over strategies in the profile, weighted by mixture probabilities.
Surplus values are means from thousands of simulations of the full
game, where strategies are randomly sampled from the equilibrium
mixed-strategy profile.

determined levels of bid shading can mitigate inef-
ficient trades in CDAs. The infinitely fast arbitrageur
immediately exploits arbitrage opportunities that
arise from incorrectly routed orders; these LA trades
tend to be inefficient, which contributes to the lower

overall welfare observed in the two-market model
with LA. Increased bid shading in the low mean
reversion environments can alleviate some of these
inefficiencies, which improves background-trader
surplus and reduces LA profits.

7.2. Effect of fragmentation on market
efficiency

Note that when latency is zero, the two fragmented
models and the CDA market in Fig. 4 are effectively
identical. The NBBO is always correct if there is no
delay, so it is not possible for any latency arbitrage
opportunities to emerge. It follows that the various
market configurations at zero latency produce sim-
ilar total surplus in equilibrium. Some differences
between the consolidated and fragmented models,
however, may arise due to strategies with η < 1.
In fragmented markets, the decision to submit exe-
cutable orders is based on the current best quote in
the trader’s assigned market, not the NBBO, leading
to possibly different results between the two-market
model and consolidated CDA, even at zero latency.

Consolidating the markets in a single CDA gener-
ally outperforms the fragmented market with LA in
environments 1 and 2. This effect is muted in thinner
markets when there are fewer trading opportunities,
such as environment 3. As for the case without latency
arbitrage, it may seem counterintuitive that welfare in
the two-market model without LA is higher than in
the consolidated CDA in some environments. It turns
out that fragmentation can actually provide a benefit
for continuous markets. The separated markets are
less likely to admit inefficient trades (i.e., where both
traders’ values fall on the same side of the longer-
term equilibrium price) that arise due to the vagaries
of arrival sequences (Wah and Wellman, 2013), as
illustrated in Fig. 5. LA can defeat this benefit by
ensuring that any orders that would match in the cen-
tral CDA also trade in the fragmented case, albeit
with LA rather than with a counterpart investor. This
primarily applies when there are sufficient trading
opportunities, as in environments 1 and 2. In a thicker
market as in environment 2, fragmentation does not
always boost surplus in the two-market model with-
out LA, as there are many traders in each market who
can act as counterparties for trade.

7.3. Effect of LA and fragmentation on liquidity

We also evaluate the effect of latency arbitrage on
market liquidity, as measured via execution times and
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Table 7
Complete specifications of symmetric equilibria for environment 1, N = 24

Model Latency 125 250 500 500** 1000 1000‡ 1000** 1500† 2000‡ 2500◦ 2500

CDA – 0 0 0 0.096 0 0 0 0 0.528 0.376 0
CDA – 0 0 0 0 0 0 0 0 0.507 0.493 0
2M 0 0 0 0 0 0 0 0 0 0 1 0
2M 0 0 0 0 0.177 0 0.123 0 0 0 0.7 0
Call 100 0.15 0.324 0 0 0 0 0 0.052 0 0.474 0
2M (no LA) 100 0 0 0 0 0 0 0 0 0.758 0.242 0
2M (no LA) 100 0 0 0 0 0 0.602 0 0 0.239 0.159 0
2M (LA) 100 0 0 0 0 0 0.237 0 0 0.537 0.226 0
Call 200 0.368 0 0.094 0 0.042 0 0 0 0 0.496 0
2M (no LA) 200 0 0 0 0 0 0.381 0 0 0.338 0.281 0
2M (LA) 200 0 0 0 0 0 0 0 0 0.679 0.321 0
Call 300 0.094 0.371 0 0 0 0 0 0 0 0.535 0
2M (no LA) 300 0 0 0 0 0 0 0 0 0.608 0.392 0
2M (no LA) 300 0 0 0 0 0 0.692 0 0 0.036 0.272 0
2M (LA) 300 0 0 0 0 0 0 0 0 0.655 0.345 0
Call 400 0 0 0.835 0.036 0 0 0 0 0 0 0.129
Call 400 0 0.416 0 0.163 0 0 0 0 0 0.421 0
Call 400 0 0.055 0 0.347 0.501 0 0 0.097 0 0 0
2M (no LA) 400 0 0 0 0 0 0 0 0 0.595 0.405 0
2M (LA) 400 0 0 0 0 0 0.47 0 0 0.258 0.272 0
Call 600 0 0.477 0 0 0.523 0 0 0 0 0 0
Call 600 0.22 0 0 0 0.379 0 0 0 0 0.401 0
Call 600 0.271 0.207 0 0.023 0 0 0 0 0 0.499 0
2M (no LA) 600 0 0 0 0 0 1 0 0 0 0 0
2M (no LA) 600 0 0 0 0 0 0.81 0 0 0 0.19 0
2M (LA) 600 0 0 0 0 0 0 0.029 0 0 0.971 0
2M (LA) 600 0 0 0 0 0 0.635 0 0 0 0.365 0
2M (LA) 600 0 0 0 0 0 0 0 0 0.643 0.308 0.049
Call 700 0.162 0.484 0.022 0 0.258 0 0 0.008 0 0.066 0
Call 700 0.185 0.471 0 0.059 0.216 0 0 0 0 0.069 0
2M (no LA) 700 0 0 0 0 0 0 0 0.209 0.791 0 0
2M (no LA) 700 0 0 0 0 0 0.739 0 0 0 0.261 0
2M (LA) 700 0 0 0 0 0 0.006 0 0 0.826 0.168 0
Call 900 0 0.246 0.498 0.256 0 0 0 0 0 0 0
2M (no LA) 900 0 0 0 0 0 0 0 0 0.836 0 0.164
2M (no LA) 900 0 0 0 0 0 0 0 0 0 1 0
2M (no LA) 900 0 0 0 0 0 0 0 0 0.537 0.463 0
2M (LA) 900 0 0 0 0 0 0 0.129 0.871 0 0 0
2M (LA) 900 0 0 0 0 0 0.131 0 0 0 0.869 0

Symmetric equilibria for empirical games for environment 1, N = 24, calculated from the 4-player DPR approximation. There is one game
per latency δ ∈ {0, 100, 200, 300, 400, 600, 700, 900} per market configuration. Each row of the table describes the mixture probabilities
for strategies for one equilibrium, and corresponds to the matching row in Table 6. The numeric column headings give Rmax values for the
ZI strategies. All strategies employ Rmin = 0, with the exception of the double star and double dagger (‡) values which use Rmin = 1

2 Rmax.
All strategies employ η = 1, except for the dagger (†) value which uses η = 0.6, and the circle (◦) and double dagger (‡) values which both
use η = 0.4.

BID-ASK spreads. Figure 6 shows that execution
time tends to be highest in the two-market model with
LA. The fastest trade execution in environment 1 is
achieved in the two-market model without LA, which
differs from findings in the literature that trading
at lower latencies improves overall execution time
(Angel et al., 2011; Garvey and Wu, 2010; Rior-
dan and Storkenmaier, 2012). This is largely due
to the different strategies selected in equilibrium in
this environment; traders tend to shade their bids
less (i.e., Rmid is lower) in the fragmented model

without LA, hence orders are more likely to execute
sooner rather than later. The improvement in execu-
tion time is at best approximately 1–2 time steps,
however, which is generally insignificant to non-HF
traders.

Traders in the other two environments, however,
do not shade more in equilibrium in the two-market
model without LA. In these cases, the fastest exe-
cution is achieved in the consolidated CDA, which
makes sense given the absence of both communica-
tion latencies and thinness induced by fragmentation.



E. Wah and M.P. Wellman / Latency arbitrage in fragmented markets: A strategic agent-based analysis 85

Table 8
Symmetric equilibria for environment 2, N = 238

Model Latency Surplus Profit Rmid η

CDA – 136079 – 1250 0.565
CDA – 136140 – 1250 0.605
2M 0 134339 – 1077 0.488
Call 50 141816 – 1250 0.4
2M (no LA) 50 135789 – 1068 0.497
2M (LA) 50 133177 2417 1062 0.513
Call 100 136961 – 1275 0.496
2M (no LA) 100 136542 – 1189 0.544
2M (LA) 100 124012 2888 1308 0.4

Symmetric equilibria for empirical games for environment 2, one
per latency (or clearing interval) setting per market configuration,
N = 238, calculated from the 4-player DPR approximation. Data
presented is as for Table 6.

Spreads can also be viewed as a measure of liq-
uidity, with tighter spreads corresponding to greater
market liquidity. The widest spreads are generally
in the two-market model with LA (Fig. 7). LA also
slightly exacerbates NBBO spreads, which are gener-
ally narrower than spreads of individual markets. The
increase in spread could reflect an implicit transac-
tion cost responsible for part of the surplus reduction
observed above.

7.4. Effect of switching to a frequent call
market

Lastly, we evaluate the effect of switching to a
discrete-time frequent call market. In our frequent
call market configuration, the latency setting dictates
the clearing period. Figure 8 shows that the total sur-
plus in the consolidated call market far exceeds that
of the two-market model with LA, and the call mar-
ket surplus is higher for all latency settings δ > 0
(there are only two market configurations at zero
latency, the fragmented model without LA and the

consolidated CDA). By aggregating orders over time,
call markets perform a more informed clear. They
increase the probability that trades occur between
intra-marginal traders—those with private valuations
inside the equilibrium price range—and thus are
less prone to executing inefficient trades than CDAs
(Gode and Sunder, 1997).

As shown in Fig. 9, the mean execution time in the
consolidated call market is much higher than that of
the two-market model with LA. Unsurprisingly, we
find that execution time in the call market is higher
than that observed in the other market configura-
tions. As market clears occur less frequently in the

Table 10
Symmetric equilibria for environment 3, N = 58

Model Latency Surplus Profit Rmid η

CDA – 27482 – 1312 0.4
2M 0 29424 – 1234 0.41
Call 25 30136 – 1191 0.559
2M (no LA) 25 29347 – 1250 0.487
2M (LA) 25 12300 161 1412 0.4
2M (LA) 25 26612 538 1303 0.4
Call 50 30310 – 1250 0.4
2M (no LA) 50 18704 – 1445 0.531
2M (no LA) 50 29479 – 1250 0.431
2M (LA) 50 16720 523 1377 0.524
2M (LA) 50 27953 1154 1228 0.413
Call 75 30587 – 1115 0.472
2M (no LA) 75 29271 – 1250 0.506
2M (LA) 75 26388 1470 1285 0.4
Call 100 27665 – 1295 0.4
2M (no LA) 100 19833 – 1430 0.565
2M (no LA) 100 29277 – 1250 0.497
2M (LA) 100 15965 1142 1398 0.449
2M (LA) 100 25070 1763 1292 0.409

Symmetric equilibria for empirical games for environment 3, one
per latency (or clearing interval) setting per market configuration,
N = 58, calculated from the 4-player DPR approximation. Data
presented is as for Table 6.

Table 9
Complete specifications of symmetric equilibria for environment 2, N = 238

Model Latency 125 250 500 500** 1000 1000‡ 1000** 1500† 2000‡ 2500◦ 2500

CDA – 0 0 0 0 0 0 0 0 0 0.726 0.274
CDA – 0 0 0 0 0 0 0 0 0 0.659 0.341
2M 0 0.146 0 0 0 0 0 0 0 0 0.854 0
Call 50 0 0 0 0 0 0 0 0 0 1 0
2M (no LA) 50 0 0.162 0 0 0 0 0 0 0 0.838 0
2M (LA) 50 0 0 0.188 0 0 0 0 0 0 0.812 0
Call 100 0 0 0 0 0 0 0 0 0.1 0.739 0.161
2M (no LA) 100 0.051 0 0 0 0 0 0 0 0 0.76 0.189
2M (LA) 100 0 0 0 0 0 0 0 0 0.233 0.767 0

Symmetric equilibria for empirical games for environment 2, N = 238, calculated from the 4-player DPR approximation. There is one
game per latency δ ∈ {0, 50, 100} per market configuration. Each row of the table describes the mixture probabilities for strategies for one
equilibrium, and corresponds to the matching row in Table 8. Data presented is as for Table 7.
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Fig. 6. Execution time in the two-market (2M) model, both with and without a latency arbitrageur, and in the consolidated CDA market, for
the three environments. Execution time is the difference between bid submission and transaction times. Each point reflects the average over
50,000 simulation runs of the maximum-welfare equilibrium for the market configuration and latency setting.

Table 11
Complete specifications of symmetric equilibria for environment 3, N = 58.

Model Latency 125 250 500 500** 1000 1000‡ 1000** 1500† 2000‡ 2500◦ 2500

CDA – 0 0 0 0 0 0 0 0 0.248 0.752 0
2M 0 0 0 0.017 0 0 0 0 0 0.004 0.979 0
Call 25 0 0 0.06 0 0 0 0 0 0 0.735 0.205
2M (no LA) 25 0 0 0 0 0 0 0 0 0 0.854 0.146
2M (LA) 25 0 0 0 0 0 0.117 0 0 0.883 0 0
2M (LA) 25 0 0 0 0 0 0 0 0 0.21 0.79 0
Call 50 0 0 0 0 0 0 0 0 0 1 0
2M (no LA) 50 0 0 0 0 0 0 0 0 0.782 0 0.218
2M (no LA) 50 0 0 0 0 0 0 0 0 0 0.948 0.052
2M (LA) 50 0 0 0 0 0 0 0.142 0 0.793 0 0.065
2M (LA) 50 0 0 0 0 0 0 0 0.065 0.043 0.892 0
Call 75 0 0.12 0 0 0 0 0 0 0 0.88 0
2M (no LA) 75 0 0 0 0 0 0 0 0 0 0.823 0.177
2M (LA) 75 0 0 0 0 0 0 0 0 0.142 0.858 0
Call 100 0 0 0 0 0 0 0 0 0.18 0.82 0
2M (no LA) 100 0 0 0 0 0 0 0 0 0.722 0.002 0.276
2M (no LA) 100 0 0 0 0 0 0 0 0 0 0.839 0.161
2M (LA) 100 0 0 0.082 0 0 0 0 0 0.918 0 0
2M (LA) 100 0 0 0.015 0 0 0 0 0 0.231 0.754 0

Symmetric equilibria for empirical games for environment 3, N = 58, calculated from the 4-player DPR approximation. There is one game
per latency δ ∈ {0, 25, 50, 75, 100} per market configuration. Each row of the table describes the mixture probabilities for strategies for one
equilibrium, and corresponds to the matching row in Table 10. Data presented is as for Table 7.

call market, it takes longer for a bid to match and
be removed from the order book. In environment 1,
execution time in the frequent call market plateaus

at approximately 20 time steps, which is equiva-
lent to the average time between trader reentries.
In the other two environments, the execution time
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in the call market increases monotonically with the
length of the clearing interval, since traders reenter
less frequently than the market clears. This tradeoff
between discrete clearing and execution speed may
not significantly affect investors if the frequent call
market matches orders frequently, such as once every
second.

In Fig. 10, we observe that the tightest spread is
realized in the consolidated call market, for all three

environments. Spreads in the frequent call market are
measured at the end of each market clear. They rep-
resent the market liquidity after orders have traded
in each interval. Since the call market generally
matches orders to trade more efficiently than the
CDA, its spreads tend to be tighter. The median
spread decreases to some degree with latency due
to the accumulation of bids in the order book, which
is indicative of greater liquidity in the market. The
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Fig. 7. Median spread and NBBO spread in the two-market (2M) model, both with and without a latency arbitrageur, and in the consolidated
CDA market, for the three environments. Spread is the amount by which ASK exceeds BID. NBBO spread is the difference between BID

and ASK of the NBBO quote. The spread at a given latency in each two-market configuration is the mean of the median spread in the
two individual markets. Each point reflects the average over 50,000 simulation runs of the maximum-welfare equilibrium for the market
configuration and latency setting.
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Fig. 9. Execution time for the consolidated frequent call market and the two-market (2M) model with LA, for the three environments. Each
point reflects the average over 50,000 simulation runs of the maximum-welfare equilibrium for each market configuration and latency setting.



E. Wah and M.P. Wellman / Latency arbitrage in fragmented markets: A strategic agent-based analysis 89

0

300

600

900

1200

1500

1800

2100

0 100 200 300 400 500 600 700 800 900
latency

CALL 2M LA

(a) Environment 1 median spread

0

300

600

900

1200

1500

1800

2100

0 100 200 300 400 500 600 700 800 900
latency

CALL 2M LA

(b) Environment 1 median NBBO

0

50

100

150

200

250

300

350

400

450

0 25 50 75 100
latency

CALL 2M LA

(c) Environment 2 median spread

0

50

100

150

200

250

300

350

400

450

0 25 50 75 100
latency

CALL 2M LA

(d) Environment 2 median NBBO

0

300

600

900

1200

1500

1800

0 25 50 75 100
latency

CALL 2M LA

(e) Environment 3 median spread

0

300

600

900

1200

1500

1800

0 25 50 75 100
latency

CALL 2M LA

(f) Environment 3 median NBBO

m
ed

ia
n 

sp
re

ad

m
ed

ia
n 

N
B

B
O

m
ed

ia
n 

sp
re

ad

m
ed

ia
n 

N
B

B
O

m
ed

ia
n 

sp
re

ad

m
ed

ia
n 

N
B

B
O

Fig. 10. Median spread and NBBO spread for the consolidated frequent call market and the two-market (2M) model with LA, for the three
environments. Each point reflects the average over 50,000 simulation runs of the maximum-welfare equilibrium for each market configuration
and latency setting.

temporal aggregation in the consolidated call mar-
ket is also responsible for similarly tight NBBO
spreads.

7.5. Relationship between transactions
and surplus

Figure 11 shows the total number of transactions
in each market configuration, for the three envi-
ronments, averaged over all observations at a given
latency. In all three environments, the total number
of transactions in the consolidated CDA and the two-

market model without LA are generally comparable,
though slightly lower in the latter. This is consistent
with our observations of surplus patterns in Fig. 4.
The two-market model without LA results in higher
surplus despite a reduction in number of transactions,
indicating that each transaction in the fragmented
model is associated with more surplus on average
than in the consolidated CDA.

The number of LA transactions does not increase
with latency, although the number of arbitrage oppor-
tunities grows as the NBBO update delay increases.
Since the background traders strategically respond
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Fig. 11. Total number of transactions in each of the four market configurations for the three environments. In the two consolidated markets
(call and CDA) and the two-market (2M) model without LA, there is no latency arbitrage so transactions only occur between ZI traders.
The rightmost bar in each group of four shows the total number of transactions in the two-market model with LA, with the top portion of
the stacked bar representing the number of LA transactions and the bottom portion representing the ZI transactions. Each bar reflects the
average over 50,000 simulation runs of the maximum-welfare equilibrium for each market configuration and latency setting.

to the presence of the LA by submitting executable
orders over limit orders, they are less likely to be
picked off by the LA.

In addition, the highest number of trades for a
market configuration at a given latency setting in
environment 1 is generally (although not always)
observed in the call market. This is a result of the
reduced Rmid values observed in the call market equi-
libria; traders in the frequent call market tend to shade
their bids less in equilibrium, and consequently are
more likely to trade. In contrast, transaction volume
is generally lower in the frequent call market in the
low mean reversion environments. Given the corre-
sponding surplus improvement (Fig. 4), this indicates

that discrete-time clearing leads to higher surplus per
trade.

8. Conclusions

Our two-market model captures fragmentation
in its simplest form, enabling our investigation of
an important phenomenon in high-frequency trad-
ing: latency arbitrage. We implemented this model
in a system combining agent-based modeling and
discrete-event simulation. We employed empirical
game-theoretic analysis to compute equilibria in
games with variations in market structure and within
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three parametrically distinct environments, and we
compared equilibrium outcomes in order to evaluate
the interplay of latency arbitrage, market fragmenta-
tion, and market design, as well as their consequences
for market performance.

Our results demonstrate that market efficiency in
equilibrium is negatively affected by the actions of
a latency arbitrageur, with no countervailing benefit
in liquidity or any other measured market perfor-
mance characteristic. Taking into consideration the
substantial operational costs of the latency arms race
would only amplify our conclusions about the harm-
ful implications of this practice.

Somewhat counterintuitively, welfare in some
environments of the fragmented model without LA
is higher than in the consolidated CDA. It turns out
fragmentation can provide a benefit in continuous
markets, as the separation of markets mitigates the
inefficient transactions that result from continuous
trading. We find that the effect of fragmentation on
liquidity varies depending on how traders strategi-
cally respond to the presence of LA.

Virtually all modern financial markets employ
continuous trading, which enables speed-advantaged
traders to exploit price differentials over fragmented
markets. A frequent call market prevents high-
frequency traders from gaining a meaningful latency
advantage, thereby eliminating latency arbitrage
opportunities and increasing surplus for background
traders. Aggregating orders over small, regular time
intervals provides efficiency gains over fragmented
and continuous markets, and in fact these benefits
appear to overshadow the gains attributable specifi-
cally to neutralizing latency arbitrage.

As with any simulation model, our results are valid
only to the extent our assumptions capture the essence
of real-world markets. Additional avenues for further
study include examining the effect of more sophisti-
cated HFT and background-trader strategies (such as
those using historical information or responding to
LA price signals), introducing other types of traders
such as market makers, and further quantifying the
impact of price discovery on efficiency.
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