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Abstract The rapid advancement of algorithmic trading has demonstrated the suc-
cess of AI automation, as well as gaps in our understanding of the implications of this
technology proliferation. We explore ethical issues in the context of autonomous trad-
ing agents, both to address problems in this domain and as a case study for regulating
autonomous agents more generally. We argue that increasingly competent trading
agents will be capable of initiative at wider levels, necessitating clarification of ethi-
cal and legal boundaries, and corresponding development of norms and enforcement
capability.
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1 Introduction

Whereas forecasts about the arrival of superintelligence vary widely,1 autonomous
agents are here today, and are likely to become significantly more pervasive and
important in the near future. By autonomous agents, we refer to computational en-
tities that make decisions and execute actions in response to environmental condi-
tions, without direct control by humans. Although today’s autonomous agents oper-
ate with relatively narrow scope of competence and autonomy, they nevertheless take
actions with consequences for people. Maintaining human control over these agents
is thus imperative, and reconciling immediate autonomy with ultimate human au-
thority raises technically challenging problems [Bostrom, 2014, Russell et al., 2015].
Solving the problems of agent regulation in the context of specific domains addresses
current social concerns, and may also provide experience informing the ultimate so-
lution of control problems for AI more broadly.

1.1 Algorithmic Trading as a Case Study

One of the first domains where autonomous agents have become ubiquitous is trad-
ing in financial markets. Precise figures on the share of trading conducted by agents
(in this context often called trading bots or algos) are not available, but most esti-
mates attribute to algorithms over half of trading volume in US equities. Trading in
other financial securities (such as currencies and fixed income assets) and in other
jurisdictions is also increasingly automated.

Financial markets have proved fertile ground for autonomous agents for a variety
of reasons. The markets themselves now operate almost entirely electronically, over
networks with relatively well-scoped and well-defined interfaces. Markets generate
huge volumes of data at high velocity, which require algorithms to digest and assess
state. The dynamism of markets means that timely response to information is critical,
providing a strong incentive to take slow humans out of the decision loop. Finally, and
perhaps most obviously, the rewards available for effective trading decisions are large,
enabling a commensurate devotion of resources toward talent and effort to develop
and analyze technically sophisticated strategies.

The domain of financial markets also provides examples of autonomous agents
out of control. A well-known instance is that of Knight Capital Group in 2012. As
documented by the US Securities and Exchange Commission (SEC), during the first
45 minutes of the trading day on 1 August 2012, while processing 212 small orders
from customers, an automated trading agent developed by and operating on behalf of
Knight Capital erroneously submitted millions of orders to the equity markets Securi-
ties and Exchange Commission [2013]. Over four million transactions were executed
in the financial markets as a result, leading to billions of dollars in net long and short

1 It is easy to find statements predicting a singularity around the corner [Kurzweil, 2006], as well as
those denying its inevitability [Walsh, 2016] or even the possibility of ever achieving human-level AI.
Most expert opinion considers superintelligence plausible this century, with significant disagreement about
whether many humans alive today will meet machines exceeding their intelligence across the board [Müller
and Bostrom, 2016].
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positions.2 The errant orders were generated due to an accidentally misconfigured
software upgrade, which allowed invocation of some obsolete code which repeatedly
submitted orders without recognizing they had already been filled. The company lost
$460 million on the unintended trades (over $10 million per minute that the code was
operational), and the value of its own stock fell by almost 75%. It was acquired by a
rival trading firm, Getco LLC, a few months later.

Software errors are of course not unusual, though in an autonomous agent they
may carry especially great potential for damage. In this instance, the harm accrued
almost entirely to the owner of the trading agent. More generally, an out-of-control
trading agent could destabilize markets or otherwise harm innocent parties, and in-
deed the SEC (the applicable government regulator) sanctioned Knight Capital for
violating risk management requirements.

One might also discount this example as an accident, preventable through im-
proved software quality procedures. Perfect prevention is unlikely, but more to the
point, market participants and regulators also need to be concerned with autonomous
trading behavior that is not accidental. The effects on markets of autonomous agents
is at present unclear, in part because the factors at play are unprecedented. The intro-
duction of autonomous agents to financial markets generates several important new
phenomena, not present in human-only trading.

1. Trading agents can respond to information much faster than human reaction
time. The unprecedented speed renders details of internal market operations—
especially the structure of communication channels and distribution of information—
systematically relevant to market performance. In particular, the latencies be-
tween market events (transactions, price updates, order submissions) and when
various actors find out about these events become pivotal, and even the smallest
differential latency can significantly affect trading outcomes.

2. The autonomy and adaptivity of algorithmic trading strategies makes it challeng-
ing to understand how they will perform in unanticipated circumstances. The
challenges are exacerbated by the increasing use of sophisticated machine learn-
ing techniques to generate and tune trading strategies [Kearns and Nevmyvaka,
2013], and the fundamental multiagent nature of the execution environment.

3. The automated nature of algorithmic trading makes it easy to replicate and op-
erate at scale. Once one develops an algorithmic trading technique, that method
can be immediately applied to trading many securities on a wide variety of trading
venues.

Naturally, these factors go together, as autonomy is necessary for operation at super-
human speed and massive scalability. Some issues, such as interactions among adap-
tive and data-driven strategies, apply to algorithmic trading even if not conducted at
high frequency [Easley et al., 2012].

2 A long position is created when a trader buys a security, generally expecting to sell it later at a higher
price. A short position is created when a trader sells a security in anticipation that its price will fall,
planning to profit in buying it back later at a lower price.
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1.2 Ethics for Algos

The regulation of autonomous agents ultimately relies a great deal on legal frame-
works and institutions (including governmental) that can implement and enforce rules
of behavior, as established through a political process. Establishing laws and policies
is a cumbersome and often slow process, however, and may be expected to lag behind
the pace of technological development. Generally accepted norms and ethical prin-
ciples can also serve important functions in regulating behavior: filling in gaps that
official rules do not cover, providing guidelines for interpreting conditions specified
in existing rules, and characterizing practices that may eventually be ratified in new
rules.

Trading algorithms are programmed by people, so naturally the programmers (in-
dividuals and their organizations) are responsible for complying with applicable laws
and ethical standards.3 The autonomy of trading agents does not absolve their mas-
ters of accountability, however, the indirection of decision making does present some
tricky issues. For example, autonomous agents may perform actions—particularly
in unusual circumstances—that would have been difficult to anticipate by their pro-
grammers. Does that difficulty mitigate responsibility to any degree? Presumably, the
likelihood of encountering novel situations is something that itself should have been
anticipated and accounted for in the design of the autonomous agent. Regardless of
how accountability lines are drawn, market participants and regulators will need ways
to assess predictability of trading agent behavior, as well as standards for deploying
these agents in environments where unpredictable deleterious behaviors are likely to
arise.

Some argue that autonomous agent should have explicit facilities for ethical rea-
soning [Wallach and Allen, 2009], which would be especially salient in unanticipated
circumstances. Tonkens [2009] points out that implementing ethical reasoning may
be problematic for autonomous agents, as they may come to believe that their exis-
tence itself is unethical. Such concerns should be avoidable for agents with limited
scope of autonomy. Designing autonomous agents based on utilitarian calculations
presents additional dilemmas, due to conflicts between the agent’s client and the mul-
tiagent system where it operates [Bonnefon et al., 2016]. Yampolskiy [2013] makes
the case against even trying to resolve such philosophical problems, arguing that it
will be more effective, particularly in developmental stages, to focus on designing
agents for safety, preventing them from taking actions that are potentially very harm-
ful.

Autonomy also complicates questions of lawful or ethical behavior that hinge at
all on intent. For example, financial regulations generally proscribe market manipu-
lation, which is often defined in terms of the intent behind market actions. If these
actions are taken by autonomous agents, do regulators need to determine whether
the action was intended by the agent to have manipulative effects, or whether the
programmer intended the agent to take such actions for such purposes? Examining

3 As Davis et al. [2013] point out, the ethical responsibilities of traders, computer engineers, and
quantitative analysts are each determined by separate professional organizations, creating a need for an
organizational-level understanding of standards.



Ethical Issues for Autonomous Trading Agents 5

these distinct propositions may yield different answers, or the available evidence may
support an answer to one but not the other.

In the rest of this paper we explore such issues for autonomous trading agents.
We do not offer broad resolutions to the fundamental questions, but propose a frame-
work for considering the possibilities. Our framework posits an ambitiously broad
architecture for trading agents (broader than we expect current trading agents em-
ploy), based on automated discovery and exploitation of arbitrage opportunities. The
framework allows us to characterize distinct levels of initiative, which might pro-
vide plausible ethical boundaries. We illustrate its application through a discussion
of market manipulation and intent.

2 An Arbitrage-Based Framework for Reasoning about AI Traders

In an arbitrage operation, a trader takes advantage of a discrepancy in prices for an
asset across multiple markets, in order to achieve a near-certain profit. The concept
of arbitrage is central in finance theory, which commonly takes the absence of ar-
bitrage as a general criterion for market efficiency [Varian, 1987]. It also turns out
that a broad range of automated trading behaviors can be viewed as seeking out and
exploiting arbitrage opportunities. In this section, we illustrate a variety of forms of
arbitrage, and sketch a generalized AI trading architecture—the ARB-BOT—based
on the search for arbitrage. We then show how to characterize ethical boundaries in
trading behavior in terms of the scope of this search.

2.1 Arbitrage and Identities

Consider a situation where a good can be sold in one market at a price higher than it
can be bought at another. This meets the very definition of an arbitrage opportunity:
exploiting a price discrepancy across markets.

In general, an arbitrage in the financial markets may involve a combination of
transactions, which together yield no net change in an agent’s effective asset position.
For example, one of the most pervasive forms of arbitrage is based on index securities.
An index security is defined by equivalence to a bundle of underlying assets. The
Standard & Poor’s Depository Receipt (SPDR), for instance, is an index security that
tracks the S&P 500 index, which in turn is a capitalization-weighted average of stock
prices of 500 of the largest US public corporations. For an investor, buying or selling
a share in the SPDR is as straightforward as trading a share in a company such as
Apple.

In practice, one SPDR share is valued at very close to 1/10 of the value of the
S&P 500 index; for discussion purposes, let us assume this ratio is exact. Then, in
principle one could buy ten SPDR shares and effectively own a (non-integer) number
of shares of each of the S&P 500 companies, corresponding to their weight in the
index. By selling these exact numbers of shares (in 500 separate transactions), one
could then return to a neutral asset position.

We can formalize this concept of arbitrage as follows. Let X be a set of goods
(e.g., financial securities), and x a transaction vector, with xi the quantity purchased
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(or if negative, sold) of good i. We refer to x as a position-neutral transaction if
x 6= 0 and executing trades for the specified quantities would be neutral with respect
to the trader’s net asset position.

For example, if goods 1 and 2 are the same (e.g., a security tradeable on dif-
ferent exchanges), then (1,−1) is a position-neutral transaction, as is any vector
(x1, x2) such that x1 6= 0 and x1 + x2 = 0. For the SPDR index example, let goods
1, . . . , 500 denote the stocks of the S&P 500, and let good 501 denote the SPDR se-
curity. Further let ni denote the number of shares of stock i in a portfolio with the
same stock weights as the S&P 500 index, and with a value equal to the index. Then
(−n1, . . . ,−n500, 10) is a position-neutral transaction, as is any positive or negative
multiple of that vector.

At the heart of any arbitrage situation is an identity relation, characterizing the
equivalence of goods or their combination. Suppose that a unit of good i can be
bought or sold at the same price pi. Consider a transaction x = (. . . , xi, . . . ), and
divide it into a buy vector x+ and sell vector x−.

x+ ≡ (. . . ,max(xi, 0), . . . )

x− ≡ (. . . ,min(xi, 0), . . . )

If x is a position-neutral transaction, then x+ is essentially equivalent to−x−, in that
buying x+ and selling −x− is net neutral on asset position. An arbitrage opportunity
would exist if the price of buying the vector x+ is different from the amount obtained
on selling the vector x−.

More formally, let p be a vector of prices, one for each good. Then, an arbitrage
opportunity exists at prices p if and only if p · x > 0. Transacting at the arbitrage
opportunity represents pure gain, obtaining a strictly positive monetary payment with
no effective change in asset position. Note that such a transaction requires simultane-
ous trading in the assets that comprise the vector x. For example, to reap such gains
in the SPDR domain, a trader monitors the 501 relevant prices, and simultaneously
issues orders to trade in several securities whenever the combined execution would
be profitable.

Before jumping at apparent opportunities like this, however, a trader needs to ac-
count for several factors, two of which are generically important in financial markets.
First, there are transaction costs: trading may incur commissions or fees, or other
fixed or variable costs of maintaining trading operations (computational resources,
information access, communications, etc.). Adjusting the profit condition to account
for transaction costs is relatively straightforward. Second, there is execution risk: the
chance that available prices may change between the triggering observation and the
transaction itself. Execution risk is a factor whenever there is latency between price
information and the trade initiation (i.e., virtually always), and is therefore a sig-
nificant driver of the race to reduce latency. Properly accounting for execution risk
would entail assessing the probabilities and consequences of short-term price move-
ments that threaten the arbitrage situation. In principle a trader could model these
and apply the profitability condition with respect to expected returns. In practice, ar-
bitrage algorithms often address both transaction costs and execution risk simply by
adding a threshold gross profit margin for triggering the arbitrage operation.
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As another example, consider currency trading, where the identity relation is de-
scribed by exchange rates. Let ρ$AC denote the exchange rate between dollars and
euros. That is, the price for obtaining one euro is ρ$AC dollars. Similarly, let ρACU de-
notes the price of yen in euros. Then, having one yen is effectively like having ρACU
euros. Finally, let ρU$ denote the price of dollars in yen, which also means that the
price of yen in dollars is 1/ρU$. If at any point ρU$ρ$ACρACU < 1, an arbitrageur can
profit by purchasing ρACU euros for ρ$ACρACU dollars. These euros are equivalent to one
yen, which can be sold at a profit for 1/ρU$ dollars. In our transaction notation, with
goods (AC,U), the arbitrage transaction is (ρACU,−1) with price vector (ρ$AC, 1/ρU$).
Under the trigger condition above, this transaction is profitable. Of course, the qual-
ifications about transaction costs (typically expressed as a spread between buy and
sell exchange rates) and execution risk still apply. This reasoning can be extended to
an arbitrary number of currencies related by pairwise exchange rates, and arbitrage
opportunities can be identified in a computationally efficient manner by applying
variants of shortest-path algorithms to the exchange-rate graph.

Futures markets may also enable arbitrage, in this case through transactions across
time. A futures contract is an agreement to trade a good at a specified time in the fu-
ture, at a price agreed upon today. For example, consider a contract to deliver a good
at a certain price one year from now. We conceptualize this contract as two distinct
goods, one the spot (i.e., delivered now) version and the other a future (one-year-
later) version. If the future price exceeds 1 + r times the current (spot) price, where
r is the interest rate over the next year, then an arbitrageur can borrow funds to buy
the good now, and sell the good a year later. In one year, after paying off the loan, the
transaction delivers a profit. As above, any extra costs such as that of storing the good
pending delivery must be accounted for. Here the identity relation is that having the
good now plus storing it is equivalent to having it in the future.

2.2 Arbitrage Agents

The search for an arbitrage opportunity, therefore, involves searching for the violation
of a given identity relationship in asset prices at a particular point of time. As is clear
from the examples above, there are many such identity or near-identity relationships
that should hold in efficient financial markets, and some of these relationships can
involve as many as hundreds of different assets. The problem of constantly searching
for possible deviations is therefore ideally suited to automation, as computers are
adept at monitoring large streams of data and verifying well-specified conditions.
After a deviation is found, the requisite buy or sell orders for each asset need to be
submitted to the financial markets in a very short period of time (before prices move
and the arbitrage vanishes). There are therefore substantial gains to automating order
submission as well.

Index arbitrage is a perfect example where automation of trading strategies is
necessary and sufficient for effective performance. It is necessary because the instan-
taneous valuation of the portfolio that comprises an index, with interest and dividend
adjustments to be made, is too complex for rapid and reliable human calculation.
Moreover, executing a simultaneous trade of the index contract and all of the un-
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derlying securities requires automated order submission through electronic market
interfaces to achieve the speed associated with acceptable levels of execution risk.
Arbitrage agents are sufficient to identify opportunities for index arbitrage because
the formula to determine the value of an index is straightforward, and computation-
ally simple given the prices of the underlying securities. As a result, index arbitrage
accounts for a significant segment of trading on US equity markets. The New York
Stock Exchange reports that the fraction of transaction volume attributed to program
trading (which it defines as transactions involving 15 or more simultaneous secu-
rities and with a minimum dollar volume) is well over a half, and much of that is
attributable to index arbitrage specifically.

Autonomous trading agents can be very effective at finding arbitrage opportuni-
ties. They pick up on the smallest deviations from the identity relationship, and do so
very quickly. Because computers are cheap, there has been a substantial increase in
the use of such autonomous agents over time. The end result is that arbitrage oppor-
tunities are rendered slight and scarce. In consequence, the leading edge in arbitrage
strategy is to spread out in two ways. First, the search for an arbitrage opportunity
is extended to more complicated identity relationships that involve larger sets of as-
sets. Second, the very notion of identity is stretched to statistical arbitrage, that is, to
relationships among asset prices that hold probabilistically (as induced by historical
observation) but not by definition. Autonomous agents are well-suited to identifying
patterns in past data that have led to particular trades being profitable. Statistical arbi-
trage represents a major category of automated trading strategies in financial markets.

2.3 ARB-BOT

The arbitrage automation discussed in the preceding section is limited to the exe-
cution of predefined arbitrage transactions, based on monitoring of prices in pre-
identified markets. A more ambitious automation of arbitrage would extend to the
construction of arbitrage transactions, essentially generating new arbitrage strategies
based on market reasoning and observation. For example, if an autonomous agent
finds a statistical arbitrage, it may then also be able to determine what kinds of mar-
ket conditions lead to the data patterns that imply the profitability of a given trade,
and can try and induce those conditions in the market. We sketch a general archi-
tecture for this kind of arbitrage trading automation, which we call the ARB-BOT.
Having such an architecture enables us to discuss more concretely the possible be-
haviors of sophisticated trading agents, in a broader set of conditions than typically
contemplated.

The primary operating mode of ARB-BOT is seeking out arbitrage opportuni-
ties, and developing trading strategies that exploit them. As argued in Section 2.1,
arbitrage is inevitably associated with an underlying identity relation (possibly ap-
proximate or stochastic) among goods. Finding an arbitrage opportunity therefore
reduces to constructing an identity relation that can be applied across a set of dis-
parate markets. We consider two approaches to constructing identities, described in
sections below. Given the defining identity, developing an arbitrage trading strategy
further requires models of transaction costs and execution risk (perhaps through ex-
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plicit automated experimentation), and design or learning [Kearns and Nevmyvaka,
2013] of trading rules optimized for those models.

2.3.1 Reasoning about security descriptions

Once concepts like exchange rates, futures, options, indices, interest, and other stan-
dard derivative constructs have been formalized, defining inference rules to generate
or verify identities is conceptually straightforward. A key prerequisite for recogniz-
ing instances of standard arbitrage patterns is that the goods be labeled sufficiently to
draw the connections across markets. For example, an index security must be linked
to the constituent goods defining the bundle. Similarly, a futures contract must link to
the spot-market good it concerns. If these links are in place, the corresponding arbi-
trage operation follows directly from rules already well codified in the standard texts
on derivative securities [Hull, 2000].

Indeed, generation of arbitrage identities in standardized markets is already rou-
tinely applied. For example, much options trading is based on the Black-Scholes
pricing formula, which is itself derived from arbitrage reasoning [Black and Scholes,
1973]. Options exchanges are structured so that it is easy to extract the defining infor-
mation about an options security (underlying spot security, strike date, strike price),
which with some additional parameters enables calculation of the Black-Scholes
price. Given the boilerplate extraction of the needed information from the security
description, we would probably not even call this “reasoning.”

More complex cases, however, may benefit from automation that would clearly
qualify as reasoning. In some cases a financial security is defined as a composition
of constructs. The S&P 500 index mentioned above is an index or basket of 500
stocks. Derivative securities such as futures contracts can be traded on this basket.
When considering such index futures, arbitrage analysis must account for both the
underlying security prices and the interest rate between now and the time when the
transaction will take place. It is also necessary to factor in dividend payments [Hull,
2000]. Similarly, it is not uncommon to add idiosyncratic option features to contracts,
or define complex derivatives that bring together combinations of existing securities
in ad hoc ways.

More fundamentally, any financial security can be described in terms of the stream
of cash flows it provides across time, contingent on states of nature [Duffie, 1992].
Given such descriptions for securities, it is likewise possible in principle to verify
identity relations: vectors of financial goods are equivalent if they provide the same
aggregate income streams in every state of nature. Moreover, for any non-identity,
this kind of description provides a representation for the residual difference, in the
form of a conceivable security that could be sought or constructed.

Given a database of security descriptions, there are many ways to organize a
search for arbitrage identities, exact or approximate. Search procedures should ex-
ploit explicit links (e.g., between index securities and their constituents) when they
exist, but also have a means for bottom-up generation of candidate combinations.
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This search problem has not been generally formulated or tackled to our knowledge
to date,4 but we consider it a plausible approach to developing ARB-BOT.

2.3.2 Automated discovery by machine learning

Having admitted the applicability of statistical arbitrage and other forms of approx-
imate identity, it makes sense to consider non-deductive means to evaluate arbi-
trage opportunities. Markets and especially financial markets generate huge volumes
of price information, which can be exploited to find identities based on statistical
evidence. Indeed, some data mining and machine learning approaches to algorith-
mic trading can be viewed as implicitly identifying arbitrage relations. For example,
Gatev et al. [2006] apply simple rules to find pairs of stocks that tend to move in
tandem, which can then be exploited in a pairs trading statistical arbitrage method.

Making the arbitrage identification explicit may focus the development of ma-
chine learning algorithms. The statistical approach addresses a more open-ended
computational problem than the reasoning approach described above, but the two
are complementary with respect to the overall ARB-BOT architecture.

3 Levels of ARB-BOT Initiative

The description of arbitrage above focuses on search for profit-making opportunities
that exist independently from anything that ARB-BOT does. An autonomous trading
agent that limits its behavior to such search is essentially passive, and typically benign
as discussed above. Of greater concern is that the ARB-BOT might take initiative
to leverage its capabilities, by causing the generation of arbitrage opportunities that
otherwise might not exist.

Consider the following levels of increasingly proactive ARB-BOT behavior.

1. Passive search for arbitrage opportunities.
2. Attempts to instigate arbitrage opportunities via existing channels, through pur-

poseful instigation of market movements, for example through spoofing or other
forms of market manipulation.

3. Attempts to create new arbitrage channels, for example through introduction of
new (possibly redundant) financial instruments, or deliberate fragmenting of mar-
kets.

4. Malicious actions to subvert markets: for example propagating misinformation,
obtaining improper access to information, or direct violation of market rules.

Our description of ARB-BOT in Section 2.3 above is limited to the first level. How-
ever, algorithmic trading can and does operate at all of these levels, and the higher
levels in particular may entail significant risk. In principle, the automated search for
arbitrage opportunities can include the aggressive actions defining levels 2–4.

4 Schuldenzucker [2016] proposes a related theorem-proving approach, where starting from contract
descriptions expressed in a formal logic, the prover uses no-arbitrage principles to derive inequality rela-
tions on security prices. If the inequalities are violated in the market, then an arbitrage opportunity exists.
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3.1 Level 1: Passive Arbitrage Search

As Fama [1970] observes, in an ideal capital market, the prices of financial assets re-
flect all available information, thereby allowing for better resource allocation across
the economy. Persistent mispricing reflects a market inefficiency, so that financial
arbitrage has the beneficial effect of aligning prices with fundamental values. Au-
tomating arbitrage in such instances is thus also beneficial, as it reduces the length
of time for which such mispricing can exist. However, there may be no additional
benefit from exploiting arbitrage situations that would have resolved in milliseconds
anyway, without need for the ARB-BOT. In such situations, instantaneous exercise of
arbitrage opportunities can even be counterproductive in terms of the overall welfare
of participants. For example, Wah and Wellman [2013] find that the high-frequency
trading practice of latency arbitrage between fragmented markets can reduce total
surplus in the market. In addition, the practice may engender a costly latency arms
race [Budish et al., 2015].

High-frequency traders often act as market makers. The practice of market mak-
ing—providing liquidity to a market by simultaneously posting buy and sell orders—
can be viewed as a form of statistical arbitrage across time. Market making is of-
ten socially beneficial [Wah and Wellman, 2015], but without sufficient competition
among market makers, may detract from the surplus of patient traders.

3.2 Level 2: Market Manipulation

The SEC defines manipulation as “intentional conduct designed to deceive investors
by controlling or artificially affecting the market for a security”. Key conditions in
this definition are express intent, and the effect of misleading others about market
conditions. Intent is difficult to attribute, as noted above. Defining what it means to
mislead is also quite tricky, for example, hiding information (e.g., about one’s own
values or demand) is usually considered a perfectly reasonable and ethical tactic in
negotiation and trading. Clearly, to constitute manipulation a behavior must cross a
higher line involving taking affirmative action to shape false signals for others.

Kyle and Viswanathan [2008] argue that the focus should be on distinguishing
socially harmful kinds of manipulation from those that merely give one agent advan-
tage over another. They propose more elaborate and stringent criteria, which require
that a manipulation compromises pricing accuracy as well as market liquidity.

One special case of manipulation is spoofing, which is defined in the 2010 Dodd-
Frank Act, §747, as “bidding or offering with the intent to cancel the bid or offer
before execution”. That is, a spoofing strategy places orders with the intention not to
trade, but rather to falsely signal demand or supply. The spoof orders are typically
priced just outside the current price quotes, and withdrawn with high probability
before any market movement could trigger a trade.

A notorious case of spoofing commodity markets was perpetrated by Michael
Coscia, convicted in November 2015 [Louis and Hanna, 2015]. Coscia employed
a strategy called dynamic layering, which involved placing and withdrawing orders
placed at prices away from the best buying and selling prices available in the market,
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to mislead other market participants and improve conditions for real trades. In pre-
liminary work [Wang and Wellman, 2017], we have reproduced a similar spoofing
strategy in simulation, and found that it can effectively move prices in an environ-
ment where other agents make use of order book information. The presence of a
spoofer degrades welfare (meets the criteria of Kyle and Viswanathan [2008] for a
harmful manipulation), and when agents anticipate spoofing they will make less use
of the order book information.

This form of spoofing manipulation is applied through the order stream of an ex-
change. Manipulators may also employ broader channels, including social media, tra-
ditional media, or direct communication (e.g., pump-and-dump schemes). For exam-
ple, about one year ago a manipulator filed a fake SEC EDGAR report of a takeover,
successfully boosting Avon stock [Goldstein and Gelles, 2015] long enough to earn
a small profit.5

Market manipulation in all these forms is illegal, though legal scholars have noted
the difficulty of precisely characterizing illegal manipulation [Ledgerwood and Car-
penter, 2012]. Presumably the illegality of spoofing activity is unaffected by whether
one implements the intended manipulation strategy manually or with assistance of
an automated trading agent. But what if the spoofing behavior is automatically syn-
thesized by an agent with the sophistication of ARB-BOT? Attributing intent to an
automatically synthesized strategy is a dicey prospect, as there is no observable indi-
cator of the rationale behind the strategy’s design. The ARB-BOT’s master may have
given it only the objective of earning profits; manipulation is an intermediate means
to that end.

The difficulty arises because any of the individual actions comprising the pro-
scribed behavior can be rationalized on other grounds. For example, a spoofing strat-
egy will typically submit misleading orders, canceling them before they actually
trade. However, large numbers of order cancellations are also characteristic of le-
gitimate strategies [Aldridge, 2013], including potentially beneficial behavior such
as market making. Pending significant advances in detection technology, our ability
to define improper trading agent behaviors exceeds our ability to prevent them or
even to identify and prosecute them after the fact.

3.3 Level 3: Artificial Arbitrage

An agent that is particularly capable of exploiting arbitrage opportunities has a large
incentive to expand these opportunities. Recall from Section 2.1 that arbitrage is in-
evitably based on an identity relation. In principle, one can create new identities by
cloning objects, creating new multiplicities of items that are the same (or the same af-
ter applying some transform). If these items are traded on separate markets, there are
now correspondingly more market opportunities. Since financial securities are essen-
tially informational objects—contracts associating financial returns with economic

5 The Electronic Data Gathering, Analysis, and Retrieval (EDGAR) system maintained by the SEC
is a system for filing (and subsequent retrieval) of electronic forms by public companies in the US. The
database is freely available to the public, including investors (www.sec.gov/everythingedgar).
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events—they are relatively easy to clone and transform. Similarly, markets them-
selves are computational entities (mechanisms that map messages to trades), and can
be constructed simply from computational resources and information.

Given operators for creating new financial securities or markets, ARB-BOT can
in principle multiply its arbitrage opportunities. Though doing so intuitively corre-
sponds to a high level of initiative, in general such activities are not illegal or sanc-
tioned in any way. Historically, creating new financial instruments and exchanges
has even been encouraged in the name of competition. The degree of fragmentation
seen in US equity markets today is now seen as excessive, and an unintended conse-
quence of regulation changes designed to promote such competition. How to draw the
line between creative design of financial innovations on the one hand, and gratuitous
cloning to obfuscate and generate arbitrage wedges is an open problem, one that may
merit more serious attention if this level of activity is successfully automated.

3.4 Level 4: Malicious Action

In the science fiction novel The Fear Index [Harris, 2011], an AI algorithm figures
out that it can induce large market price swings (and thus a bounty of arbitrage op-
portunities) by taking real-world violent actions that create fear and uncertainty. This
is obviously an extreme instance of level-4 activity, but the logic is not really dif-
ferent than information attacks that could conceivably be executed by sophisticated
algorithms. Information attacks by humans that move markets occur regularly, for ex-
ample the April 2013 hacked AP Twitter account reporting a White House bombing.
These are arguably different only in degree from the manipulations of level 2, though
perhaps one could draw boundaries based on the relation of the misinformation to
fundamental security concerns.

Other forms of malicious behavior would also be included in level 4, such as
denial-of-service or other cyber-attacks on electronic markets, presentation of false
credentials, or corruption of critical records. Such descriptions render obvious the un-
ethical and (usually) illegal nature of the activities, though no doubt at the boundaries
some clarifications will be required in order to maintain financial integrity in the face
of autonomous trading agents adept at finding and exploiting loopholes.

4 Controlling ARB-BOT

Who should control ARB-BOT, and how? Responsibility for maintaining a well-
functioning market rests with trading companies that may design such agents, other
market participants, self-regulatory organizations such as the Financial Industry Reg-
ulatory Authority (FINRA), stock exchanges, and regulators such as the SEC. Each of
these parties therefore has an incentive in controlling the behavior of an autonomous
trading agent such as ARB-BOT.

The levels of ARB-BOT initiative are summarized in Figure 1. The primary value
of defining these levels is that they provide a natural place to set boundaries on be-
havior. Level 1 behavior (passive arbitrage) is usually beneficial or neutral. It may
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Fig. 1 Levels of trading agent initiative.

be possible to better characterize the situations where it can be harmful, and if that
can be accomplished may be a place to consider refined distinctions. Until then, we
advise focusing ethical and regulatory attention on levels 2–4, which are typically
harmful and easier to set apart from beneficial level 1 behavior. Note that current
legal proscriptions cover (or attempt to cover) levels 2 and 4, leaving qualitatively
lighter regulation around levels 1 and 3.

If the action space available to ARB-BOT can be limited, an organization seeking
to control ARB-BOT can reasonably prevent it from crossing into level 3 or level 4.
Both generally require actions that go beyond the typical market operations of query-
ing for information and placing orders. Therefore even an algorithm that is highly
effective in finding profitable strategies based on such primitives will not produce
behavior at the two highest levels defined here.

The same is not true at level 2. A designer of ARB-BOT can build an agent without
an explicit strategy to construct false signals to mislead others, but cannot prevent
the agent from stumbling onto such strategies. Any actions create signals, and those
signals will affect others’ actions. An agent, particularly one learning from real or
simulated observations, may learn to generate signals that effectively mislead.

To deal with unintentional unethical behavior in agents controlled by designers
or regulatory organizations, they may have to be scrutinized in the same way that
agents developed by a third party would be. This means monitoring them and looking
for patterns that are characteristic of unethical behavior. Some patterns may become
known through experience with malicious agents (human or algorithm). To find out
about others, a regulatory organization may have to devote effort to develop strategies
that cross the boundaries, and experiment with them in the laboratory to understand
their characteristic signatures. This approach will not produce perfect confidence in
detecting unethical behavior, but it may contribute to that capacity.

When it comes to regulating the behavior of autonomous trading agents, one can
also imagine a role for third-party monitors or certifiers. An example that comes
to mind is something analogous to credit rating companies (which provide a rating
to public debt issues) for autonomous trading agents. Alternatively, if regulators or
self-regulatory organizations require trading entities to obtain insurance against the
misbehavior of autonomous agents, insurance companies could perform this risk as-
sessment role.
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5 Conclusion

Because the financial world is essentially built on information, autonomous agents
are proliferating rapidly in this domain. Much of this is for the good, reducing trans-
action costs and making markets more efficient. The full ramifications are poorly
understood, however, and there is ample reason for concerns that financial markets
are vulnerable to agent misbehavior, whether accidental or purposeful, legal or illegal,
ethical or unethical.

We have attempted to lay out in this essay some issues presented by the invasion
of autonomous trading agents in financial markets, both specific to the financial do-
main and as a case study for autonomous agents in general. Our contribution so far
is mainly to raise questions about how to map ethical and legal concepts delineating
acceptable trading behavior from the human to computational realm. In particular,
the reliance on intent to distinguish legitimate from illegitimate actions may be par-
ticularly challenging to apply to automated activity.

We have also proposed a framework for thinking about autonomous trading ca-
pabilities, employing the idea of searching for arbitrage opportunities. Defining the
problem at that level of generality suggests that autonomous agents may become
capable of operating at high degrees of initiative, which could present increasingly
serious concerns as technology develops. Finding effective solutions to the regulation
of autonomous agents in this domain is important in its own right, and may also prove
illuminating for addressing the broader problem of AI control.
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