
Accounting for Strategic Response in an Agent-Based Model of
Financial Regulation

FRANK CHENG, University of Michigan
MICHAEL P. WELLMAN, University of Michigan

Due to complex interactions in �nancial markets, �nancial regulations can sometimes produce unexpected
outcomes, and fail to achieve their macroeconomic goals. We replicate a previous agent-based simulation
study which showed that the Basel banking regulations may increase �nancial instability, counter to their
intended purpose. Our replication con�rms that this is the case, following the original study’s assumption
that the �nancial �rms’ behaviors are �xed. We then extend the model to account for a possible strategic
response, where �nancial �rms adapt to the regulatory regime. Using empirical game-theoretic analysis, we
derive equilibria with and without regulation. We �nd that in the new Basel-regulated equilibria, more funds
stay out of default and banks lose less capital. �e overall e�ect of regulation on �nancial stability becomes
benign on most measures when accounting for the strategic adaptation of agents.
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1 INTRODUCTION
�e �nancial crisis in 2008 marked a seismic shi� in perceptions of how markets operate. Its
reverberations are still being felt now in debt markets around the world [Sha�er, 2016]. �e
question of how �nancial crises arise time and again in the midst of sophisticated and logically
motivated actors is still incompletely understood. A�er an initial rush in academic circles to develop
new economic models to re�ect forensic evidence from the crash and to recommend regulation to
prevent future crashes, we have been le� with a plethora of di�erent viewpoints.

One approach that has gained in�uence even in crisis-unrelated research [Healy and Palepu,
2001] focuses on the fact that buyers and sellers do not have the same access to information about
assets, especially in the context of debt markets. Based on this asymmetry, Bernanke et al. [1999]
showed that periodic, deep �nancial crashes are endemic due to an overreaction to interest rate
changes. �e recommendation is clear: force sellers to be more transparent about their wares.
Almost everyone agrees that making more information available is a good policy, and regulators
commonly work towards this goal.

�ere are many other convincing perspectives on the crisis. �e irrational exuberance [Shiller,
2015] narrative posits a deep behavioral reason for market malfunction. It is also popular to point
to systemic factors like lax lending standards and oversight leading to market participants whose
priorities move away from the proper valuation of assets [Commission, 2011]. Another body of
work points to the seizure of credit markets at the most critical juncture of the crisis for amplifying
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the crisis. �is failure has been a�ributed to either too much re�nancing during normal times
[Roberts and Su�, 2009] or a run on liquidity [Ivashina and Scharfstein, 2010] in response to
�nancial panic. Agent-based simulations elaborating on traditional economic models have also
been used. Bookstaber et al. [2017] introduce one where agents have �xed �re-sale behavior and
the spread of the crisis can subsequently be measured through di�erent pathways.

All of these models can explain some aspects of the �nancial crisis, and suggest various emphases
for macroeconomic policy and regulation. Given the complexity of the �nancial system, however,
it is di�cult to draw direct conclusions from underlying causes to ideal policies. An alternative
perspective is to start from the policies, and model the situations where they are bene�cial or
harmful. We take this perspective, focusing on international banking regulations in the Basel
framework. Basel’s salience follows from its central role in global �nancial policy, and its force in
governing the lending policies of major �nancial institutions.

Basel regulations consist chie�y of a limit to leverage, or the ratio of gross investment to wealth.
By taking on debt, this ratio can become arbitrarily large without regulation. An institution with
high leverage cannot pay its obligations if its investments underperform even slightly, so it seems
natural that limiting leverage may help control default risk. �at leverage levels turned out to
predict the �nancial crisis be�er than interest rates evidences the centrality of this variable to
�nancial stability.1 Regulator belief in limiting leverage is so strong that their most prominent
operational regulation a�er the crisis was to simply implement a stricter version of Basel. But as
such policies had failed to immunize the �nancial system, there is some uncertainty about how
much the stricter version will help in the future.

�e leverage cycle model of Geanakoplos [2003] describes the ebb and �ow of leverage, shedding
light on how aggregate leverage may increase to dangerous levels. Importantly, the model endoge-
nizes leverage, showing how it evolves through agent decision making. Several key predictions
made by this model were borne out by asset behavior during the crisis. First, price �uctuations
were disproportionate to fundamental value changes. Second, the failure of a few highly leveraged
investors had an outsize impact on prices. �ird, the severe tightening of short term credit markets
contributed to a deeper crash. All of these predictions were entailed by the model, with leverage
choices at Walrasian equilibrium under perfect information.

While the model of Geanakoplos [2003] had the advantage of being fully analytical, it extended
only to three periods and thus could not accommodate changing �nancial regulation over time. In
a discrete agent-based extension to the leverage cycle model, �urner et al. [2012] and Poledna et al.
[2014] introduced a Basel-style regulator that imposes a leverage limit on �nancial �rms. As in the
latest round of Basel �nancial regulations, the leverage limit in the model is more stringent in times
of high asset price volatility. Using this model, Poledna et al. [2014] argue that Basel regulations
could, counter to their purpose, contribute to �nancial instability. In their model under certain
se�ings, market participants (or funds) defaulted more frequently and produced more volatile
asset prices when a Basel-based leverage limit was implemented. Market participants also made less
pro�t. However, funds that defaulted were of a smaller size so that the cost per default decreased.
A follow-up study by Aymanns and Farmer [2015] suggests that an inverted Basel regulation would
be more e�ective at preventing �nancial crises.

Our contribution to this story is to observe that a certain �xed assumption in these models, the
aggression distribution, might naturally be considered a strategic choice by agents. We extend
the model of Poledna et al. [2014] to a game, where the agents strategically choose their aggression
level in response to the regulation regime. We employ simulation-based methods to analyze this

1A study by Geanakoplos et al. [2012] established a link between �nancial crashes and leverage levels that successfully
predicted data from 2.2 million American households.
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game, identifying aggression distributions that are in approximate Nash equilibrium. Using this
approach we reverse in aggregate the �nding that Basel causes more defaults. Losses due to default
decrease further, and agent pro�ts decrease less. �e overall case against Basel is thus weakened
by our �ndings.

In Section 2 we describe the model used by Poledna et al. [2014], and explain the e�ect of
Basel regulations on the leverage cycle in this model. We also describe implementation details
and assumptions used in the original work that carry over into our independent implementation.
In Section 3 we argue that agent aggression levels in this model should be treated as strategic
variables. We propose an approach to analyze the strategic adaptations of agent aggression using
Nash equilibrium. Finally, we design an experiment that distinguishes the e�ect of Basel on the
leverage cycle for a �xed set of agents (studied in previous work) from its e�ect due to strategic
adaptations of agents found in equilibrium. We measure the e�ect of Basel on �nancial stability by
looking at default rate, agent pro�ts, capital losses, and price volatility. �e strategic adaptation
of agents on its own improved every measure except price volatility, which was unchanged. In
aggregate, we �nd that Basel decreases default rate and capital losses while also decreasing agent
pro�ts and increasing price volatility.

2 AN AGENT-BASED MODEL OF THE LEVERAGE CYCLE
Following Poledna et al. [2014], we adopt and extend the basic leverage cycle model of Geanakoplos
[2010]. �is model has been credited with predicting characteristics of the 2008 �nancial crisis
years in advance. By treating leverage as an endogenous decision, it characterizes equilibrium in
�nancial markets in terms of leverage taken by each agent in addition to the asset price and the
interest rate on debt. Since Basel targets leverage as a policy variable, the leverage cycle model
seems like a natural candidate for evaluating recent �nancial regulation.

However, the original leverage cycle model is limited in its ability to express real-world complexity.
For example, it cannot be extended for an arbitrary number of periods and short asset positions are
not considered. Basel regulation, since it responds to the historical volatility of asset prices, is not
easily incorporated. To address such issues, Poledna et al. [2014] develop a discrete agent-based
model (ABM). At a high level, this model clears the market in each period for persistent �nancial
agents. Agents carry over their wealth to each new period, where demand undergoes a random
shock and new prices are formed. Basel regulation is easily expressed in this new model since a
regulator may act in each period with knowledge of historical prices. �e �ip side is that agents
are no longer coming to an intertemporal equilibrium as in the leverage cycle model. But leverage
remains an endogenous decision by each market participant.

2.1 Agent-Based Model
Poledna et al. [2014] include four types of agent, who interact in a market for a single risky asset. �e
asset has a fundamental value,V , and a market price p(t) at time t , determined by the cumulative
demand of all agents. �e central actors are informed value investors called fund managers. Fund
managers know the fundamental value and adjust their demand for the asset based on a mispricing
signalm = V −pt . �e fund managers exhibit heterogeneous demand as a function ofm, re�ecting
their di�ering levels of aggression in pursuing investment opportunities. �e more aggressive
a fund is, the more leverage it will take to pursue a given mispricing signal. Aggression re�ects
factors such as a fund’s con�dence that the asset price will return to its fundamental in short
order, and its tolerance for risk. A fund manager that buys an asset while it is priced under its
fundamental is be�ing that the price will move back up and make her a pro�t.
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To buy or short-sell assets, fund managers may take loans from the bank, treated as an agent
in the ABM of Poledna et al. [2014]. �e bank provides credit to funds but requires a set amount
of collateral per unit debt. In e�ect, this collateral requirement imposes a leverage limit. To see
this, consider how a leveraged investor keeps her books. She knows that to borrow a dollar from
the bank she must commit some amount of wealth as collateral. Call this collateral requirement X .
But she only has so much wealth,W , to commit in total. �us there is a maximum amount she can
borrow,W /X , which is constant givenW . �e ratio of this maximum amount to her current wealth
is 1/X . If the bank decides to increase X , it e�ectively decreases the leverage limit. In practice, we
refer to the bank se�ing a leverage limit without relating explicitly to collateral. In general the
investor is taking on debt in order to take a larger investment position, which she is free to do until
she is over the leverage limit. �en she must wind down her investment position and reduce her
debt until she is in compliance with the bank.

�us, in any given time period, funds are limited in the size of the asset position they can take,
either long or short, in response to asset mispricings. Note that the bank may be forced to take
losses when fund managers default. �ese losses are recorded but the bank itself never defaults, as
it is assumed that there is an unlimited bailout fund.

Mispricings are made possible by stochastic, weakly mean-reverting asset demand from aptly
named noise traders. �e noise traders represent a collection of ill-informed investors. �eir
collective behavior exerts a random shock to total asset demand, which in turn shi�s the market-
clearing asset price.

�e �nal agent type is the fund investor . �e fund investor’s role is simply to move capital
from fund managers with poor (historical) performance, toward those with good performance.

2.2 The Leverage Cycle and Basel: Intuition
It is easy to see that without any limits on leverage, the price of the asset would always return to
its fundamental value, as funds would just increase their position against the direction of the shock
until the mispricing disappears. It requires just one fund able to take unlimited size positions on
the asset to ensure that there is never any price volatility around V . But with leverage limits, the
system exhibits complete leverage cycles over time. �e qualitative steps to the cycle are shown in
Figure 1.

Fig. 1. Stages of the leverage cycle modeled by Poledna et al. [2014].

When shocks are small enough, wealth in the system becomes more and more concentrated in
the most aggressive funds as they take more e�ective leverage in pursuing mispricing opportunities.
�is gradually increases the sensitivity of total wealth in the system to random price shocks until
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some investors reach their leverage limit. At that point, a decrease in the asset price would push the
leverage ratio over the limit,2 and so the investor would be forced to sell to get back in compliance
when she would actually rather be buying the asset. �is action is procyclical, since the act of
selling further depresses the price, which can lead to further deleveraging by other funds. It may
even induce a mass sell-o� (or buy-o� for short positions) as other, formerly less leveraged funds
struggle to satisfy the leverage limit due to the acceleration of the price movement against their
positions. Eventually enough funds have either defaulted or deleveraged that, collectively, they
have become insensitive to further price movements, and the cycle begins again. Price volatility,
probability of investor default, and losses on defaulted loans are all elevated due to this leverage
cycle.

Within this model we can also incorporate Basel-style regulation, which makes leverage limits
more stringent during periods of high volatility and less stringent otherwise. Under �xed fund
behavior, this increases the probability that investors get into procyclical situations, since the
leverage limits themselves will adapt to be procyclical. Intuitively, higher leverage limits in volatile
times could allow funds to provide a voice of reason and return the price to the asset’s fundamental
value. So Basel, by doing the opposite, potentially makes volatility and default more likely. On the
other hand, Basel may reduce the losses su�ered by the bank on defaulted loans, since the doomed
funds were forced to deleverage more quickly before their default.

Our study starts by reimplementing this ABM and replicating the original results. �e remainder
of this section describes model details; our extension to incorporate strategic response is described
in Section 3. To implement the model, we used as references the description of Poledna et al. [2014]
together with code provided by these authors in response to our queries. Unless otherwise stated,
all of the following modeling decisions and parameters are as implemented in the prior work. We
a�empt to keep the model as close as possible to prior work in order to isolate the e�ect that our
equilibrium concept has on the evaluation of Basel policies. �ese assumptions were justi�ed in
the original work by drawing parallels with real data on �nancial crashes.

2.3 Schedule
�e state of the market is de�ned by an equilibrium asset price and the resulting holdings and debt
levels of the fund managers. �e agent-based simulation iterates between a price formation phase
and a wealth update phase. We describe these phases at a high level below to give a sense of the
scheduling of tasks.

Price Formation.
(1) Each fund manager has a �xed demand as a function of the mispricing signal and its current

wealth. �ese demand functions depend on the maximum leverage allowed by banks as
well as the fund’s idiosyncratic aggression parameter.

(2) Noise traders demand the asset according to a stochastic process such that without fund
managers the asset price would weakly mean revert around the fundamental value of
the asset (an Ornstein-Uhlenbeck process). �e noise trader’s demand is what makes the
mispricing signal nonzero in each period.

(3) �e price of the asset is set at a level that clears the market given the collection of demand
functions submi�ed by noise traders and fund managers. �is is the Walrasian equilibrium.

Wealth Update of Fund Managers.

2For example, consider the investor with $1 who borrows $5 to buy assets worth $6. Her leverage ratio is currently 6. If the
asset value decreases to $5.5, the investor still owes $5 to the bank, so her wealth is now $0.5. Her leverage ratio increases
to 11, which may be out of compliance with the bank.
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(1) �e new asset price as determined in the price-formation phase induces revised wealth
levels for each of the fund managers based on the market value of their holdings.

(2) �e fund investors obtain a new datapoint regarding the pro�tability of each fund manager
by observing the wealth gained or lost in this update. �ey withdraw or deposit capital
into funds accordingly.

(3) Banks enforce leverage limits on funds. Funds that exceed leverage limits are subject to a
margin call, requiring they change their position in the asset to comply with the limit.
Note that the violation of leverage limits can be triggered by a change in asset price, by the
movement of capital by fund investors, or some combination.

2.4 Basic Definitions
We de�ne the key variables describing the state of a fund h at time t .

(1) Dh(t) is the amount of the asset that the fund holds at t . It may be positive, meaning the
fund owns a positive amount of the asset, or negative, indicating a short position.

(2) Mh(t) is the cash position of the fund. �e cash balance is changed each period based on
purchases or sales of the asset. A negative Mh(t) indicates a debt position.

(3) �e wealth of a fund is de�ned by

Wh(t) ≡ Dh(t)p(t) +Mh(t).

where recall that p(t) is market price of the asset. All nondefaulted funds haveWh(t) > 0.
�is entails in particular that a short asset position is always accompanied by a positive
cash position.

(4) �e leverage taken by each �rm is de�ned as

λh(t) ≡
{
Dh(t)p(t)/Wh(t) if Dh(t) ≥ 0 (long)
Mh(t)/Wh(t) if Dh(t) < 0 (short)

Recalling thatWh(t) within a period is constant and positive, and therefore the numerator
is always positive, λh(t) ∈ [0,∞). It can in principle be made arbitrarily large by taking
an investment position of su�cient magnitude, although due to leverage restrictions the
funds are constrained in the positions they can take. Note that leverage is ill de�ned for
Wh(t) ≤ 0.

�ese de�nitions allow for a fund to have short and long positions on an asset. For a given
wealth, a fund with a long position has a positive value of asset holdings Dh(t)p(t) with cash Mh(t)
unrestricted. A common scenario is negative Mh(t), meaning the fund has taken on debt to �nance
their long position. �is necessarily makes Dh(t)p(t) >Wh(t). �us any fund indebted to the bank
must have λh(t) ≥ 1.

On the other hand, a fund with a short position owes future shares to its counterparty (Dh(t) < 0)
but holds the cash it obtained from the sale of these future shares (Mh(t) > 0). If the price of the
asset p(t) increases, the wealth of a fund that is long on the asset goes up while the wealth of a
fund that is short goes down. �e opposite occurs if p(t) decreases.

2.5 Regulatory Environments
In the somewhat misnamed unregulated environment, λh(t) is constrained to be less than a
parameter λmax for all h. �e Basel environment adaptively selects maximum leverage λσ (t )max
between periods based on price volatility σ (t). λσ (t )max is calculated at the beginning of every timestep
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t according to the formula
λσ (t )max = min{λmax,max{1, σb

σ (t) }}, (1)

where σb = 0.0118 is a set benchmark level of volatility, and σ (t) is measured as the average
volatility of the log asset price in the previous 10 periods. Before 10 periods are available, all price
data is used. �us, maximum leverage requirements are adjusted downwards in periods of high
volatility and are allowed to reach λmax when volatility is low. In the unregulated case, λmax is still
a hard limit on leverage but it does not adapt to market conditions.

2.6 Fund Demand
Leverage limits e�ectively constrain the maximum and minimum demand for each fund manager.
Individually, each fund managerh with aggression parameter βh has a demandDh(t) of the following
form, at time t :

Dh(t) ≡


(1 − λσ (t )max )Wh(t − 1)/p(t) m(t) ≤ (1 − λmax)/βh
λσ (t )maxWh(t − 1)/p(t) m(t) > λmax/βh
βhm(t)Wh(t − 1)/p(t) otherwise

Here the price p(t) at time t is the free variable and all other quantities are �xed. �e fundamental
value is set at V = 1 andWh(t − 1) denotes the total wealth accumulated by h in the last period. In
the original study [Poledna et al., 2014], the aggression parameter βh is �xed to be h × 5 where
h ∈ {1, . . . , 10} is the index of the fund, of which there are ten in total. In our strategic analysis we
allow the funds to choose the βh ’s, but for now they are �xed. Notice that in the lower and upper
regions of price, demand does not depend on βh . In particular, demand is �xed in these regions.
�is comes from the fact that funds have hit their leverage limit and cannot borrow further to
pursue investment opportunities. An example of the demand function for two funds with di�erent
βh is shown in Figure 2.

Fig. 2. Demand as a function of mispricing. The mispricing values beyond short saturation and long saturation
on either side result in no additional demand for the asset because leverage limits have been reached.
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2.7 Market Clearing Price
Every period, prices are used to coordinate asset allocation. Each fund submits their demand
function truthfully and an equilibrium is found a�er the noise traders generate stochastic demand.
Each period gets its own independent price. �e only thing that transfers information between
periods is the wealth that each fund ends up holding.

Given the demand functions of all funds as well as the noise trader demand C(t), prices are
formed via the market clearing condition∑

h

Dh(t) = N −C(t), (2)

where C(t) is generated by

logCn(t) = ρ logCn(t − 1) + σn χ (t) + (1 − ρ) log(N ).

�e noise parameter σn is set to 0.035 and χ (t) is an i.i.d. standard Gaussian draw. Parameter ρ is
set to 0.99, representing extremely weak mean reversion. �is is the Ornstein-Uhlenbeck process, a
standard model in �nance for asset price dynamics.

We set N = 109. Equation (2) is a piecewise linear function of p(t) which can be solved using
standard methods.

2.8 Wealth Update
Using the p(t) (recall it is embedded in the demand functions Dh(t)) obtained as solution to (2), the
wealth of each fundWh(t) can now be updated. Assume for now that Dh(t − 1) is positive, that
is, fund h takes a long position. �ere are three possible sources of wealth change in the model:
market value of assets, interest payments, and equity �ows.

�e increase in asset value for each fund is simply Dh(t − 1)[p(t) − p(t − 1)], and re�ects the
return on an investment made in the previous period. �is is the fund’s pro�t or loss.

In general, funds �nance their investment opportunities using debt from the bank. If the amount
of cash Mh(t) =Wh(t) − Dh(t)p(t) is negative, then the fund has borrowed from the bank to buy
Dh(t) shares of the asset. In this case the fund pays a �xed interest rate S = 0.015%. A�er paying
interest, the fund’s total available assets for withdrawal is now

M∗h(t) = Dh(t − 1)p(t) +Mh(t − 1)(1 + S).

�e other source for changes in wealth is withdrawals or deposits made by fund investors. �ese
make their decisions based on recent performance of each fund. Fund investors examine each
fund’s rate of return (estimated using an exponential moving average) rh(t) and withdraw/deposit
an amount Fh(t) as follows:

Fh(t) = max{−1,b(rh(t) − rb )}max{0,M∗h(t)},

where the benchmark return rb is 0.003 and b, controlling how strongly fund investors react to
historical performance, is set at 0.15. �e overall motion equation for wealth is then

Wh(t) =Wh(t − 1) + Dh(t − 1)[p(t) − p(t − 1)] + Fh(t) +Mh(t − 1)(1 + S).

Analogously, for a short position we have

M∗h(t) = Dh(t − 1)p(t) +Mh(t − 1) + Dh(t − 1)S,
Wh(t) =Wh(t − 1) + Dh(t − 1)[p(t) − p(t − 1)] + Fh(t) + Dh(t − 1)p(t − 1)S .

Once all fund wealths are updated, the time step is complete and we go back to price formation.
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2.9 Default
Each fund starts withW0 = 2 × 106 in wealth. Default occurs when wealth goes below a critical
valueWe = 2× 105. In this case, the fund’s wealth, demand, and cash positions become zero for 100
timesteps, a�er which the fund is resuscitated at the same level of aggression βh and givenW0 to
start operations again.

3 SYSTEMIC RISK EVALUATION
�e motivation for using this model is to see what e�ect regulation can have on the leverage
cycle, and how this impacts systemic risk. We �rst develop an approach for evaluating the e�ect
of regulation when fund managers are given the opportunity to adapt strategically according to
changing external conditions. �en we de�ne metrics for measuring systemic risk and perform an
experiment measuring the e�ects of the strategic adaptations on systemic risk.

3.1 Strategic Aggression Behavior
Recall from Section 2.6 that each fund is assigned an aggression level. We call these assignments
the aggression distribution. Poledna et al. [2014] assume that the aggression distribution is
�xed. �is assumption is problematic for several reasons, but fundamentally because it limits the
responsiveness of fund behavior to environmental conditions, either of the market or the regulatory
system.

We focus on this assumption in particular because the entire model appears to be highly sensitive
to the aggression distribution. For example, if all funds have low aggression then leverage will
almost never be high enough to induce defaults. As circumstantial evidence for this, in all the
experiments described in Section 3.4, no fund at an aggression level of 5 ever defaulted. �is may
be considered an extreme se�ing, but it is disturbing that one can generate almost any story one
wants by manipulating this �xed assumption. It is far be�er to derive the aggression distribution
from something more fundamental, like strategic choice.

�erefore we treat aggression level as an endogenous variable, taking account of the dependence
of each fund’s payo� on the aggression of other players. �at is, we cast the entire scenario as a
game played among funds, where aggression distributions are strategy pro�les and aggression
levels are strategies. �is allows us to search through the space of possible aggression distributions
to �nd a Nash equilibrium where no fund can make more pro�t by changing their aggression
level. �is approach, notably, leaves each fund’s aggression level (and thus demand function) in
a given period �xed. Within a given time period we still have perfect information and complete
markets, so clearing the asset market still produces a Walrasian equilibrium. �e only intertemporal
choice funds make is aggression level, which is chosen for all periods simultaneously. �us our
strategic analysis is limited to aggression levels, that is, we do not consider other strategic market
behavior.3 �is preserves the spirit of the leverage cycle story for a given equilibrium choice of
aggression distribution. We see below that the aggregate e�ect of equilibrating prices in each
period and aggression over all periods has a substantial e�ect on �nancial stability.

3.2 Experimental Setup
In our approach we evaluate the introduction of Basel into the model on two dimensions. First,
given a particular aggression distribution, we measure the e�ect of regulatory environment on
systemic risk measures. �is isolates the e�ect of Basel on the leverage cycle story given �xed
aggression levels. Second, given a particular regulatory environment, we look at the e�ect of
3Since funds are not atomic, there could be room for exercising market power. In our se�ing we view the market as
competitive enough at that level to ignore such options.
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changing the distribution of fund aggression levels. �is isolates the e�ect of Basel on the strategic
choice of aggression levels while leaving its e�ect on the leverage cycle constant.

Nash Equilibrium. First, some de�nitions and implementation details. A pure pro�le is an H -
dimensional vector β containing a single aggression level, or strategy, for each of H funds. For our
study we chose a number of funds H ∈ {10, 21} and a set of 7 possible aggression levels/strategies
Γ = {5, 10, 15, 20, 30, 40, 50}. �us a particular fund’s mixed strategy is a 7-dimensional vector of
positive real numbers summing to 1, corresponding to the probabilities that the fund will pick each
of the seven strategies for use over the entire simulation. A mixed strategy D induces a probability
distribution over pure pro�les. Drawing from Γ using the multinomial distribution speci�ed by D
assigns a βh to each of the H funds.

�ere are many strategy pro�les and we cannot evaluate them all. Our focus is on pro�les
that are strategically stable. A mixed strategy D∗ is stable if no fund has an incentive to deviate
from drawing its strategy from D∗. In other words, D∗ is a mixed strategy symmetric Nash
equilibrium over fund aggression levels. �e problem becomes �nding D∗ in a computationally
feasible way, since the number of pro�les increases exponentially with the number of players and
strategies. To do this, we �rst need to de�ne how the game is played and how payo�s are generated.

Payo�s and Game De�nition. Each run of the model provides a ready made payo�: the fee earned
by each fund. To �nd this fee, we �rst run the model for T = 50, 000 periods using H ∈ {10, 21}
funds and a given β vector representing the aggression level for each fund. At the end of the
simulation, we annualize into 1000 years containing 50 periods each as before. In each year i
starting at periods t , we calculate the average size of fund h, Wh(i) =

∑t+50
t Wh(t)/50 as well as

the pro�t ζh(i) =Wh(t + 50) −Wh(t) −
∑t+50

t Fh(t), which is simply the change in wealth net of
investor withdrawals and deposits over the course of the year. �e fee for year i is then de�ned as
0.2ζh(i) + 0.02Wh(i) and the total fees over the entire simulation for fund h are

1000∑
i=1

0.2ζh(i) + 0.02Wh(i).

�is is the speci�cation used by Poledna et al. [2014], based on standard practice in the �nancial
industry. It captures the common 2-and-20 fee structure, which pays hedge funds 2% of assets
under management and 20% of value returned to investors annually. �is annualization (1000 years
that are each 50 periods long) is done according to the original paper [Poledna et al., 2014], where
the model was calibrated to real yearly data. Note that the payo� for a given mixed strategy D
depends on whether or not Basel is active as well as λmax and is an average over many 50,000-period
simulations where pure pro�les β are generated from D.

Environmental Se�ings. In summary, we can view the model input as choice of regulation R, a
particular β vector of strategies representing a pure pro�le, and parameters λmax. �e model itself
can be viewed as a black box function, mapping to the model output which is a vector of rewards,
or fees, for each fund. In reality, remember that we are relying on separate Walrasian equilibria in
each of the 50,000 periods to set prices.

Finding the Nash equilibrium distribution D∗(R, λmax) of such a system requires searching
through input β and evaluating fees until an equilibrium is found. We adopt a heuristic approach,
inexhaustively exploring a space of strategy pro�les and estimating their payo�s through agent-
based simulation. �is method goes by the name of empirical game-theoretic analysis [Wellman,
2016], as it applies standard game-theoretic concepts to a game model derived by empirical means.
We use a suite of tools developed by Cassell and Wellman [2013] to automate the simulation and
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data management. We were able to obtain approximate D∗(R, λmax) for R ∈ {Basel,Unregulated}
and λmax ∈ {8, 20}. �ese levels of λmax were chosen to re�ect a wide range of conditions.

Note that we chose to show results for the same set of strategies Γ as that used by Poledna
et al. [2014]. �is was mainly for comparability, but we did test lower minimum (down to 1),
higher maximum (up to 70), and a �ner resolution in between for aggression levels. We found
that the results were not qualitatively di�erent. For example, a beta of 1 was not adopted in the
mixed strategy equilibrium when added to the reported set of strategies. In all tested cases, Basel
encouraged less average aggression in equilibrium.

Empirical Game-�eoretic Analysis. Our empirical game approach imposes two major approxima-
tions. First, the set of available strategies Γ is restricted to a modest number of enumerated choices.
As noted above, we limit a�ention to |Γ | = 7 choices of aggression level. Since the number of
strategy pro�les is exponential in the number of strategies, we have no choice but to impose such a
limit. Second, for the H = 21 se�ing we used a technique called deviation preserving reduction
[Wiedenbeck and Wellman, 2012], which employs aggregation to model the 21-player game in
terms of a reduced six-player game.

3.3 Systemic Risk Metrics
Our metrics for systemic risk di�er from those provided by Poledna et al. [2014] in one key respect.
Rather than focusing on the risk of the most aggressive fund manager, we instead evaluate risk
aggregated over all fund managers. �e aggregate measure re�ects a more direct evaluation of
the entire economy. Moreover, as we allow distribution of aggression to vary based on endoge-
nous choices, we need a way to evaluate the riskiness across situations with di�erent maximum
aggression levels. �is di�erence is only relevant for measuring probability of default and capital
losses.4

Probability of Default. To calculate probability of default of a single fund for a single run of the
model, we record the years during which a default occurred. �en we divide the number of defaults
by the number of years during which default was possible, Kh . Kh ≤ 1000 because defaulted funds
go out of operation for 2 years, or 100 time steps, as speci�ed in Section 2.3. �us, there are entire
years during which default is impossible. Note that there are also years during which default is only
partially possible as the fund is still in a defaulted state at the beginning of the year. We choose to
exclude these years from Kh as well. �e overall probability of default is then∑

h

#defaultsh/(KhH ).

Here, recall that H is the total number of funds.

Capital Losses to Banks. Capital losses are the amount of loss banks su�er when a fund manager
defaults. It is de�ned as the wealthWh(t) of the defaulting fund at default. �is is an important
metric for systemic risk because these losses are o�en paid for through bank bailouts, which detract
from social welfare.

Capital losses were measured on an annual basis, in the same way as for probability of default.
Yearly capital losses are totaled, then averaged across the number of funds and number of years
during which default was possible.

4We also calculated the original study’s metrics and veri�ed that our implementation matched the results reported by
Poledna et al. [2014].
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Price Volatility. Price volatility is detrimental to the extent it contributes to �nancial uncertainty.
One of the functions of �nancial markets is e�cient price discovery, and one might hope that in a
single asset market where some investors have perfect information about the fundamental value of
the asset, this function would be performed well. Price volatility is a good proxy for how well price
discovery is performed. Indeed, if we allow

∑
h Dh(t) to be large compared to C(t) for all t , we

would expect price volatility to be near zero as the e�ect of the noise traders is minimized. Price
volatility is the average of the annual variances of p(t). �is metric does not depend on Kh like the
other two, since prices can be formed regardless of the default status of any fund.

3.4 Systemic Risk Results
First we note that in every se�ing we evaluated, the strategy pro�le that maximized total fees was
for every fund to use βh = 5. �is is the least aggressive strategy available, and is the most limiting
in the range of investment choices available to the fund. �e only bene�t to playing this strategy is
that it mitigates the leverage cycle and may prevent crashes from happening. �is is circumstantial
evidence that defaults are very harmful not only to banks and investors, but also to the funds
themselves. It also provides a basis for believing that strategy pro�les with low aggression may be
be�er for systemic risk.

Regulation numFunds λmax 5 10 15 20 30 40 50 βweighted

Unregulated 21 20 35% 4% 0% 0% 0% 0% 60% 32.3

Basel 21 20 40% 12% 6% 0% 0% 0% 42% 25.3

Unregulated 21 8 32% 15% 7% 2% 0% 0% 43% 26.3

Basel 21 8 46% 11% 9% 5% 10% 15% 4% 16.7

Unregulated 10 20 46% 5% 0% 0% 0% 0% 49% 27.4

Basel 10 20 51% 14% 8% 0% 0% 0% 26% 18.4

Unregulated 10 8 40% 21% 8% 0% 0% 0% 31% 20.8

Basel 10 8 53% 18% 7% 1% 11% 10% 0% 13.0

Fig. 3. Mixed-strategy symmetric equilibria for di�erent regulatory regimes and leverage restrictions.

Mixed Strategy Nash Equilibria. We found an approximate mixed strategy Nash equilibrium
for each of 8 environmental se�ings, shown in Figure 3. We also report βweighted , which is the
average value of βh drawn from each distribution over strategies. Notice that decreasing λmax and
imposing Basel both decrease the βweighted of the Nash equilibrium. When Basel is imposed, it is no
longer as lucrative for funds to be aggressive since they will reach their leverage limits immediately.
Decreasing λmax has a similar e�ect. �is strategic response has rami�cations on our systemic risk
measures.

Interestingly, all equilibria are far from the social optimum. �is is because it takes coordination
to prevent defaults and maximize pro�ts. Unilaterally playing a less aggressive strategy has positive
externalities, namely a lower default rate and crash rate for all agents, that are not internalized by
fund payo�s.

Systemic Risk under Equilibria. When Basel is imposed on a previously unregulated market, two
things happen in equilibrium. First, the mechanics of fund behavior change as their leverage limits
become more stringent in volatile periods. Second, funds adapt their aggression to �t the regulation,
shi�ing to less aggresive (on average) Nash equilibria over mixed strategies as in Figure 3. To
evaluate these two e�ects on �nancial stability, we �rst select an mixed strategy equilibrium. Next,
we take 200 draws from the distribution. Each draw is a valid strategy pro�le. We calculate the
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metrics from Section 3.3 on each of these 200 strategy pro�les both with and without Basel. �e
averages are presented in Figure 5 and Figure 4.

↑ Volatility ↑ Volatility

λmax = 20 Basel Unregulated λmax = 8 Basel Unregulated

Basel 0.0222 0.0182 Basel 0.0338 0.0205

Unregulated 0.0221 0.018 Unregulated 0.0341 0.0208

↑
Default 

Probability
↓

Default 

Probability

λmax = 20 Basel Unregulated λmax = 8 Basel Unregulated

Basel 3.67% 2.99% Basel 1.43% 2.20%

Unregulated 5.02% 3.73% Unregulated 3.11% 3.55%

↓ Capital Loss ↓ Capital Loss

λmax = 20 Basel Unregulated λmax = 8 Basel Unregulated

Basel 2.66E+06 3.42E+06 Basel 5.45E+05 2.13E+06

Unregulated 3.21E+06 3.88E+06 Unregulated 9.15E+05 2.76E+06

↓ Fees ↓ Fees

λmax = 20 Basel Unregulated λmax = 8 Basel Unregulated

Basel 1.80E+05 1.90E+05 Basel 1.43E+05 2.03E+05

Unregulated 1.78E+05 1.87E+05 Unregulated 1.37E+05 1.93E+05
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Fig. 4. Three systemic risk metrics evaluated at two levels of λmax for 21 funds. Analagous table for 10 funds
in Figure 5. Within a table, each row fixes an equilibrium mixed strategy and applies a di�erent regulatory
se�ing, each column fixes a regulatory se�ing and switches to a di�erent mixed strategy equilibrium. Down
arrows signify that the metric decreased when Basel was applied in the study by Poledna et al. [2014]
while up arrows signify that the metric increased. Blue le�ering means changing that property results in
a metric change that agrees with Poledna et al. [2014] while red means changing that property results in
a metric change that goes against their finding. Black means that there was no significant change in the
variable. Example: For λmax = 20’s default probability table, up arrow means that Poledna et al. [2014] found
Basel increased default probability. Fixing profiles and changing se�ings agrees with this finding, indicating
successful replication, while fixing se�ing and changing profiles goes against this finding.

Each table shows two-dimensional variation across regulatory environments. Along rows, we
keep the mixed strategy equilibrium �xed and change the environment. Along columns, we keep
the regulatory se�ing �xed and change the equilibrium. For every metric and se�ing we tested,
shi�ing between Basel and unregulated environments under a �xed equilibrium resulted in the same
e�ect on the metric as that reported by Poledna et al. [2014]. �is should not be surprising since
with a �xed aggression distribution, we are essentially repeating their experiment with slightly
di�erent aggression se�ings. �is is con�rmation that we have done a successful replication.

Something interesting happens when we examine these tables along columns. �is is equivalent
to �xing the regulatory environment and switching between mixed strategy equilibria. We have
already seen that the average βh for Basel equilibria is substantially lower. It turns out that less
aggressive funds increase �nancial stability by decreasing the probability of default and bank
capital losses. For example, at λmax = 20, even though Basel makes default more likely for a �xed
aggression distribution, the shi� towards the Basel equilibrium counteracts and reverses this e�ect
for both H = 10 and H = 21.
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↑ Volatility ↑ Volatility

λmax = 20 Basel Unregulated λmax = 8 Basel Unregulated

Basel 0.0232 0.0188 Basel 0.0317 0.0205
Unregulated 0.0229 0.0188 Unregulated 0.0313 0.0219

↑
Default 

Probability
↓

Default 

Probability

λmax = 20 Basel Unregulated λmax = 8 Basel Unregulated

Basel 2.24% 2.11% Basel 0.52% 1.35%
Unregulated 4.17% 3.65% Unregulated 1.23% 2.46%

↓ Capital Loss ↓ Capital Loss

λmax = 20 Basel Unregulated λmax = 8 Basel Unregulated

Basel 1.43E+06 2.24E+06 Basel 3.09E+05 1.41E+06
Unregulated 1.91E+06 2.79E+06 Unregulated 3.52E+05 1.56E+06

--- Fees ↓ Fees

λmax = 20 Basel Unregulated λmax = 8 Basel Unregulated

Basel 4.25E+05 4.34E+05 Basel 3.48E+05 4.63E+05
Unregulated 4.28E+05 4.26E+05 Unregulated 3.28E+05 4.34E+05P
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Fig. 5. 10 funds. See Figure 4 for key.

In aggregate (that is, moving from the Basel/Basel cell to the Unregulated/Unregulated one), the
story has changed. Basel decreases probability of default in every measured case. Capital losses,
which were already decreasing in the original study, decrease even further. Price volatility still
increases with Basel, since the shi� in equilibrium did not have an e�ect. Fees are lower in the
Basel se�ing, but by less than was predicted by Poledna et al. [2014]. Shi�ing between equilibria
increases fees in most cases to cancel out some of the fee loss found in the original study.

3.5 Discussion
So what explains Basel’s performance in decreasing systemic risk? We break this question into
two parts. First, how does Basel allow less aggressive funds to thrive compared to aggressive ones?
And second, why do less aggressive funds allow for be�er �nancial stability?

Consider this model with a single fund manager. Suppose she is currently operating in the
unregulated environment with λmax = 20 and she hears that Basel will soon be implemented.
�is can only lower her leverage limit. We posit that even without any strategic interactions
with other funds, she will be inclined to lower her aggression levels. A fund gets more fees by
generating higher returns, and higher returns are go�en by taking high leverage when there are
large mispricing signals. When leverage limits are high, an aggressive fund will just snap up all the
mispriced assets at and pro�t o� of all of them. But when leverage limits become more stringent
under Basel, too much aggression will quickly lead to paralysis due to hi�ing the leverage limit.
In contrast, less aggression will preserve some investment capacity for the truly large mispricing
signals, generating a be�er return.

Now consider two funds who each know that Basel is coming. If they both decide to be aggressive,
they can mitigate more price movements, reduce price volatility, and operate as if Basel was never
implemented. However, if fund A decides to shirk its price enforcing duties by being less aggressive,
Basel will restrict maximum leverage since price volatility will rise. �is doesn’t a�ect fund A much
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since it doesn’t take much leverage anyway. In fact, in all of our simulations, the funds playing
strategy βh ∈ {5, 10} never defaulted a single time. But the leverage limit does a�ect the more
aggressive fund B, and will cause it to default eventually. When this happens, A will have the entire
market to itself. When this strategic advantage is coupled with the fact that less aggressive funds
stand to make more pro�t regardless of what other funds do, it is easy to see why Basel induces
funds to be less aggressive.

Now why does the shi� to a less aggressive set of funds result in be�er default rates, bank losses,
and fees while not having any e�ect on price volatility? Note that here we are only giving intuition
for the e�ect of the shi� in aggression distribution, not the aggregate e�ect of Basel.

Less aggressive funds simply do not take much leverage before the mispricing signal disappears
randomly. �us, they never get to the point where a price shock can cause them to lose all their
wealth. Again we quote the result that not a single low-aggression fund defaulted in our experiments.
�us, default rates decrease when funds are less aggressive.

Funds that are aggressive under equilibrium that end up defaulting also cause less capital loss
to banks. Recall the feedback cycle that occurs with Basel. First, aggressive �rms accumulate all
the wealth in good times since Basel hasn’t kicked in yet. �en, a price shock happens that forces
the aggressive funds to wind down their positions to comply with collateral requirements. �is
procyclical unwinding deepens the initial shock, increasing volatility and forcing Basel to make
leverage limits more stringent. When there are many less aggressive funds, none of this volatility
can be absorbed and the Basel requirements will get extremely stringent. �us, the funds that end
up defaulting will have been trying to reach a lower leverage limit. �is reduces their size when
they default.

Fees are slightly helped by less aggression for the same reason funds decided to be less aggressive
in the �rst place. And price volatility is de�nitely hurt in normal times by less aggressive funds,
but the decrease in default rate re�ects a lower incidence of �nancial crashes, which helps price
volatility. It seems these two e�ects cancel out.

4 CONCLUSION
When evaluating the e�ect of �nancial regulation on markets, we should always be aware that
agents in this arena are highly sophisticated and resourceful. It is a good bet that any possible
path to pro�t will eventually be explored. So when economic models make �xed assumptions on
behavior, we should always be on guard for the day these assumptions start break down. To become
more robust, models can endogenize important behavioral assumptions so that agent response to
the environment is as realistic as possible.

We argue for endogenizing the aggression level of funds in an agent based leverage cycle model
used to evaluate Basel regulations. We then propose a strategic analysis that endogenizes an
important �xed assumption, the aggression distribution. A�er making appropriate approximations
to make �nding equilibria feasible, we perform a series of experiments to measure the aggregate
e�ect of Basel on �nancial stability under our new equilibrium concept. Our �ndings suggest that
the pessimism surrounding Basel’s exacerbation of leverage cycles may be overstated. We �nd
that irrecoverable losses on the part of banks and defaulted funds are reduced substantially under
Basel. Although fund pro�ts fall, our new equilibrium concept lessens the fall compared to the one
without endogenous aggression. Volatility remains a problem, as funds still cannot prevent day to
day �uctuations in price e�ectively.

�ere is still much work to be done, both in evaluating Basel and in building richer economic
models. For the former, the obvious question is how to improve on Basel so that we get its bene�ts
(less aggressive agents on average) without its costs (agents constrained from taking volatility
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out of prices). �ere has been some work on this, but not under endogenous aggression levels
[Aymanns and Farmer, 2015, Poledna et al., 2015, Poledna and �urner, 2016]. �ere are also many
other directions where computer science techniques can aid in understanding Basel. For example,
using network science and graph theory to model �nancial networks could help us understand
how contagion works and how regulation a�ects it.

�e way we solve for equilibria in agent based models can also be studied further. For example,
how close does clearing the market in each period independently come to preserving Pareto
e�ciency in a multi-period se�ing? How does imperfect information a�ect regarding noise traders
play into this? In addition, in our analysis we �xed aggression to be constant throughout the entire
simulation. �is was mainly to not disturb the market clearing process within each time step. But
perhaps there is a way to combine the market clearing mechanism and the strategic aggression
adjustments so that they interact with each other. �is would make for a less interpretable model
but may be more realistic for certain markets.
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