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Abstract

Strategic shading of bids is typically viewed as a factor degrading the
efficiency of auction outcomes. In continuous double auctions (CDAs),
however, strategic bid-shading can actually improve allocative efficiency,
as it counteracts the inherent inefficiency of CDAs induced by vagaries
in order arrival sequence. This has been demonstrated most clearly in a
standard CDA model by Zhan and Friedman (2007). Through a system-
atic simulation-based game-theoretic study, we show that the phenomenon
also exhibits in symmetric mixed-strategy equilibria of Zhan and Fried-
man’s original game, and in equilibria of a richer dynamic model, more
representative of financial markets. We find that the presence and degree
of the effect can vary significantly, with the greatest benefit of strategic
shading in markets with many traders or in the presence of factors such
as adverse selection and limited trading opportunity.

1 Introduction

The continuous double auction (CDA) (Friedman, 1993) is a simple and well-
studied auction mechanism, ubiquitous as the mechanism implementing limit-
order markets for financial trading. A limit order is an offer to buy or sell a
security, specifying the limits of price (maximum for buy or minimum for sell) at
which the offeror is willing to trade. CDAs operate continuously, maintaining
unmatched limit orders in an order book, and executing a trade immediately
upon admitting a limit order matching one outstanding in the book. Outstand-
ing orders are matched in order of best offered price. All major stock exchanges,
as well as commodity and futures trading institutions, employ some form of CDA
for the bulk of their trading activity, and have for a century or more. Given
the centrality of this market institution, it is striking that some basic strategic
properties remain hazily understood. Financial trading features dynamic inter-
action with incomplete information (both private and common value elements),
in a setting where one’s own bid can determine the price of the current trans-
action, and influence prices of subsequent trades. To date, auction theory has

1

mailto:erik.brinkman@umich.edu
mailto:wellman@umich.edu


not successfully tackled this combination of issues in a setting approaching the
richness of financial markets.

It has long been understood that CDAs can exhibit allocative inefficiency
(Gode and Sunder, 1997): at the end of trading the goods may not be held by
those who value them the most. Prior studies in our own research group have
also found efficiency gaps in continuous trading (Wah and Wellman, 2017). A
primary reason, stated simply, is that when agent arrivals to the market are
spread over time, the myopic matching procedure of the CDA may produce
suboptimal allocations. Biais et al. (2005) survey an extensive literature on rea-
sons for inefficiency, and ways in which concentrating trading in time (as in a
call market) can improve efficiency. Modern proposals for online mechanism de-
signs (Blum et al., 2006) aim to maximize efficiency, but redesign of entrenched
continuous mechanisms is not generally an option.

Myopic matching leads to inefficiency even with truthful bidding. In actual
markets, strategic bidders shade their bids from their true values to account for
the potential effect of their bids on the transaction price. In a one-shot double
auction setting, such shading can only degrade allocation quality, from the per-
fect efficiency that would be achieved with truthful bidders. Strategic financial
agents should also be expected to shade their bids, so it bears considering how
that affects allocative efficiency in a dynamic limit-order market.

This question was previously addressed within a standard CDA model by
Zhan and Friedman (2007), who found that profiles of shading (markup) strate-
gies in a restricted form of Nash equilibrium are highly efficient, and often yield
better allocations than truth-telling. We replicate key parts of this prior work
and extend it in two major directions. First, we conduct a more comprehensive
game-theoretic analysis, evaluating a much larger space of strategy profiles and
considering mixed as well as pure strategies in our search for Nash equilibria.
Second, in addition to their simple model, we also investigate a richer family of
market environments designed to capture key features of financial markets, in-
cluding private and common valuation elements, significant dynamic structure,
and a broader space of agent strategies. Importantly, the common value element
of our market model introduces adverse selection, which adds an extra incentive
for agents to shade their bids that is not present in independent private value
models.

Like Zhan and Friedman, we evaluate profiles of shading strategies through
simulation. Analytic solutions of CDA games are intractable beyond simple
instances, and all the more out of reach for our richer class of financial trading
scenarios. We conduct an extensive empirical game-theoretic analysis, to iden-
tify the direction of the effect on efficiency in the region of equilibrium trading
behavior. Our results confirm that the efficiency improvements of pure-strategy
equilibria found by Zhan and Friedman are also exhibited by mixed-strategy
equilibria in their simple model and in more complex financial markets. How-
ever, shading equilibria are not always more efficient than their truth-telling
counterparts. Only with a large number of agents, meaningfully limited agent
arrivals, or large adverse selection do we find outcomes produced by strategic
bidders consistently superior to the results of truth-tellers.
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Figure 1: How shading can improve efficiency in the scenario of Example 1. Dia-
monds represent agent valuations, dashed intervals represent inefficient shading,
and solid intervals represent efficient shading. When b1 and s2 shade enough,
they prevent inefficient trades with s1 and b2.

2 Stylized Examples of Shading’s Effect on CDA
Equilibrium Efficiency

We develop insight on the effect of strategic shading on CDA efficiency through
inspection of some simple CDA bidding scenarios. We measure efficiency as the
ratio of the expected total surplus of a profile to the expectation of the maximum
surplus possible—also known as the competitive equilibrium (CE) surplus. As
we show, equilibrium shading can either increase or decrease overall efficiency
when compared to truth-telling. In this section, we present an instance that
demonstrates how shading can benefit efficiency, then we analyze an instance
where the benefits are obtained in Perfect Bayesian Equilibrium (PBE), and
put forth another instance where PBE shading degrades surplus.

Our first example was previously employed by Wah et al. (2017) to illustrate
the allocative inefficiency of CDAs.

Example 1. Consider a market with two buyers and two sellers. The buyers
have private values b1 and b2, and sellers have private values s1 and s2, such
that values are ordered b1 > s1 > b2 > s2.

Suppose that the agents arrive at the market in order from greatest valuation
to least valuation. This sequence is shown in Figure 1. If the agents indeed
submit orders at their valuations (the diamonds), then buyer 1 trades with
seller 1, yielding surplus b1 − s1, and buyer 2 trades with seller 2, yielding
b2−s2. If instead buyer 1 trades with seller 2, the total surplus is b1−s2, which
is socially optimal. The greedy matching of the CDA in this instance executes
trades that preclude efficient allocation. Whether this happens depends on how
the limit orders are sequenced. With bids priced at these valuations, a random
permutation of limit orders has a two-thirds probability of being suboptimal.

Suppose instead that the agents shade their bids away from their true val-
uations. For simplicity let us say that they all shade symmetrically, and the
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valuations are evenly spaced by ∆ = b1 − s1 = s1 − b2 = b2 − s2. If the agents
shade more than 1

2∆, then the inefficient trades will not happen. As long as
b1 and s2 shade less than 3

2∆, then these two still trade, and the allocation is
efficient.

The inefficiency of this example is conditioned on the fact that the agents
arrived in a particularly bad order, and they cannot reenter to submit new
orders. Absent either condition both shading and truth-telling can be efficient.
However, this example still elucidates a simple reason for why a little shading
promotes efficiency in CDA markets. By definition, competitive equilibrium
trades provide relatively high surplus to the agents involved, and are therefore
tolerant to some amount of shading. In contrast, inefficient trades generate
lower surplus and can be prevented by a moderate amount of shading.

Having demonstrated that non-shading strategies can produce inefficient
outcomes, and that some shading can restore efficiency, the natural next ques-
tion is what happens in equilibrium? Strategic agents will clearly shade bids
away from their valuations. Will the equilibrium shading levels be sufficient to
restore efficiency, or will they perhaps shade too much? Our next example is a
stylized situation where PBE is more efficient.

Example 2. Let there be two buyers and one seller. One buyer, BL, has val-
uation vBL with Pr(vBL = 1) = Pr(vBL = 2) = 0.5. The other buyer, BH , has
valuation vBH with Pr(vBH = 2) = Pr(vBH = 3) = 0.5. The sole seller, S,
has valuation vS = 0. The agents arrive at the market in a uniform random
ordering, and get to observe the order book and their position in the ordering.

Details of the equilibrium and its derivation are left to Appendix A.1. A
simple way to see what happens is to note that when vBL = 2, the seller trades
with whichever of BL or BH arrives first. When vBL = 1, the seller is able to
price out the low buyer, and so the seller trades with the high buyer regardless
of arrival order. Thus 1

4 of the time, the seller strategy improves efficiency over
truth-telling, and never reduces it. In this example, agent rationality prevents
the inefficient trade when the low value buyer arrives early but never prevents
efficient trades. It turns out that strategic shading improves efficiency of this
market from 0.86 to 0.95. However, equilibrium efficiency is not guaranteed
to improve over truth-telling in general, as demonstrated in our next stylized
example.

Example 3. Let there be two buyers and one seller, all with i.i.d. uniform
private values over the unit interval. The agents arrive in a uniform random
ordering, and observe the current state of the order book, and the ordering of
agents.

Details of the equilibrium are left to Appendix A.2. The key aspect of this
equilibrium is that when the seller arrives last, it always trades with the highest
value buyer if it wants to. When buyers truthfully reveal their valuations, this is
always maximally efficient. However, When the buyers are strategic they both
shade significantly—to extract more surplus from the seller and to outbid each
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other. Thus, when the seller arrives last, strategic play significantly decreases
the probability of making the efficient trade. When the seller arrives first or
second, improvements in trade efficiency roughly balance the reduced number
of trades leaving efficiency in these orderings roughly on par with the efficiency
of truth-telling. The equilibrium efficiency is 0.77, considerably less than the
corresponding truth-telling efficiency of 0.89.

Of course, these are only particular instances; it is easy to construct other
simple instances where strategic shading either helps or harms efficiency. It is
therefore necessary to understand what aspects of the market cause equilibrium
efficiency to be better or worse than truth-telling. In the remainder of this
paper we explore the effect of shading in richer scenarios, an expanded form of
the model from Zhan and Friedman (2007) and a model more representative
of trading situations that arise in financial markets. We overlay game-theoretic
reasoning on a systematic simulation-based process, to investigate the impact of
strategic bidding on outcomes realized in approximate equilibria, across a range
of market environments.

3 Prior Work: Zhan and Friedman

There are many prior studies that attempt to characterize the efficiency of
CDAs, however most do so from the perspective of semi-strategic agents, such
as human lab participants or fixed algorithms designed without concern for
equilibrium (Cason and Friedman, 1996; Gjerstad and Dickhaut, 1998; Rust
et al., 1993). In contrast, Zhan and Friedman (2007) address the question with
respect to Nash equilibrium shading. In their model, there are N buyers and N
sellers with uniform i.i.d. private values for a single unit. The authors considered
three different values of N : 4 (thin), 10 (medium), and 100 (thick); and three
classes of parameterized shading strategies: Standard, Exponential, and Shift.
Strategies are defined for buyers b or sellers s, and map the agent’s valuation v
to its order price. Let c denote the width of the value distribution.

standardb(v) = v(1−m) exponentialb(v) = ve−m shiftb(v) = v − cm
standards(v) = v(1 +m) exponentials(v) = ve+m shifts(v) = v + cm

To analyze their model as a normal-form game, Zhan and Friedman instantiated
eleven discrete strategies, with shading amounts evenly spaced from 0 to 1, for
each class. An agent’s strategic choice is the amount of shading conditioned on a
global shading class and market thickness. Agents arrive in a random ordering1

and submit limit orders applying their shading strategies to their private values.
In this model strategies do not consider market information, such as price quotes
or transaction history; they are functions solely of private value.

Separate from their analysis of equilibrium shading, Zhan and Friedman
used this model to explore how uniform non-strategic shading affects market

1This description is slightly different from the original, but produces identical results.
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Figure 2: Moderate shading reduces inefficiency from suboptimal trades (EM-
inefficiency) without introducing significant inefficiency from missed optimal
trades (IM inefficiency). Significant shading increases efficiency lost from not
making optimal trades. The data presented is from a replication of Zhan and
Friedman (2007, Figure 6).

efficiency. Their investigation of uniform shading in the thick-market standard-
shading scenario follows the intuition from Example 1: that moderate shading
mostly precludes inefficient trades. We replicated this experiment with our own
implementation, and present the relationship between shading and efficiency in
Figure 2 (which faithfully reproduces Zhan and Friedman’s Figure 6).2 Let IM
inefficiency refer to the inefficiency due to agents who would trade in compet-
itive equilibrium do not (missing intra-marginal trades), and EM inefficiency
refer to the inefficiency from agents who would not trade in CE but do (present
extra-marginal trades). The figure shows that as symmetric fixed shading in-
creases from zero (truth-telling), EM inefficiency significantly decreases, while
IM inefficiency remains close to zero. A little before 0.3 shading, both sources
of inefficiency are minimized, and then as shading increases more, the IM in-
efficiency significantly increases. This suggests that the majority of inefficient
trades have relatively small margins, and are inhibited by a small amount of
shading, whereas the efficient trades have larger margins and so are uninhibited
by modest shading.

In addition to analysis of the market environment under uniform shading,
Zhan and Friedman also empirically found role-symmetric pure-strategy Nash
equilibria in the nine variations of this game. In a role-symmetric strategy
profile, each player within a role (here buyer or seller) plays the same pure or

2This despite our use of a subtly different definition of expected efficiency, stated in the
beginning of Section 2. Section 5 discusses this difference in more detail.
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mixed strategy. Conveniently, each of their game instances had a single role-
symmetric pure-strategy equilibrium, or a single ε-approximate one for small ε.
Zhan and Friedman conclude from the efficiency of these equilibria that CDA
equilibrium surplus is close to optimal surplus. However, their results for the
thin market—with four buyers and four sellers—indicate that the equilibrium
surplus, while high, can be much worse than truth-telling. The issue of non-
universal improvement over truth-telling is not discussed much by Zhan and
Friedman, but is the focus of our extended investigation. In Section 5 we present
the rest of the results of our replication and extension of this work.

4 Empirical Game-Theoretic Analysis

Evaluating the effect of shading on efficiency for all combinations of strategy
choices and environments would be infeasible; moreover, the various strategic
contexts are not equally relevant. Generally speaking, we are most interested
in the effect of shading by rational traders. In other words, we wish to evaluate
the impact in equilibrium, where the agents are adopting the best strategies,
given the setting and other-agent strategy selections.

Since the models we investigate are too complex to support analytical solu-
tions, we compute empirical equilibria using a simulation-based process, known
as empirical game-theoretic analysis (EGTA) (Wellman, 2016). EGTA employs
systematic simulation of strategy profiles to generate samples of profile payoffs in
a specified environment. The simulated payoff data is used to induce a normal-
form game model, from which we identify role-symmetric mixed-strategy ε-
equilibria with respect to the given finite strategy set. A role-symmetric mixed-
strategy profile is defined by a distribution over strategies for each role. An
ε-equilibrium is a profile such that the regret—the improvement in payoff for
unilaterally deviating from the profile when all other agents sample from their
role distribution independently—is less than ε.

In the environments we analyze, strategy spaces are continuous and not
necessarily compact. We discretized the strategies to make the games amenable
to modeling in normal form. For our replication of Zhan and Friedman (2007),
we adopted the discretization of the original authors. For our new environments
we wanted to choose a set of discrete strategies such that equilibria in the discrete
game would tend to exhibit low regret in the continuous game. We started with
a rough grid of feasible strategies, and then added a few best responses to initial
equilibria, similar to the technique described by Jordan et al. (2010). Analysis
of the game over discrete strategies provides no guarantees about regret with
respect to the full continuous strategy space, but it does allow us to make precise
statements about regret in this restricted normal-form game.

Even with discretized strategies, the number of profiles that would need to be
evaluated to directly estimate a complete normal-form game is astronomical—
6×1057 for the largest game analyzed here. We adopt two techniques to reduce
the number of profiles we sample. First, we employ a heuristic profile search
that biases towards low-support equilibria. By sampling only a small num-
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ber of strategies played in conjunction we aim to confirm equilibria by sampling
payoffs from a small number of profiles. Second, we employ an aggregation tech-
nique known as deviation-preserving reduction (DPR) (Wiedenbeck and Well-
man, 2012) to approximate a game with many players as a reduced game with a
smaller number of players. DPR is a heuristic that preserves regret of symmet-
ric pure strategies and approximates the regret of symmetric mixed strategies.
The approximation typically works well if the payoff impact of single other
agents is small. Since DPR provides no guarantees for the mixture regret in
the unreduced game, we gather additional payoff samples from the equilibrium
candidates’ mixture distributions and use bootstrapping to compute confidence
intervals on regret in the unreduced game. This is a slight variation on the
bootstrap regret technique of Wiedenbeck et al. (2014), and has been shown to
produce accurate confidence bounds. None of the equilibria we found had large
regret upper confidence bounds, so while DPR may have affected which equilib-
ria we found, the statistical evidence suggests that it did not degrade the quality
of equilibria we found. In addition, in games where we found both pure and
mixed-strategy equilibria, the upper confidence regret bound on mixed-strategy
equilibria was always close to the confidence bound for pure-strategy equilibria.
Since pure strategy equilibria found by DPR are also equilibria in the unreduced
game, this evidence suggests that the regret caused by DPR is small compared
to the inherent variability of the models.

The heuristics these techniques employ mean that we have no guarantees
about the coverage of the whole solution space. In a strict sense, that sacrifice
is unavoidable. In infinite games, if the strategy space is not compact or the
utility functions are not smooth, then Nash equilibria might not exist (Glicks-
berg, 1952). Finding every Nash equilibrium, even in a finite game, is NP-hard
(Gilboa and Zemel, 1989). More pragmatically, sampling every profile from
even a relatively small game might be prohibitively expensive, as the number
of distinct profiles in a symmetric game grows exponentially. In spite of these
difficulties, the combination of our analysis techniques allows us to use game
theory to analyze strategic interaction between agents that is much richer than
tractable analytic models can provide.

4.1 Profile Search

Even in a game with few players, a large number of strategies can make evalu-
ating every profile through simulation prohibitive. Since it is computationally
infeasible to guarantee that we have found every role-symmetric equilibrium, we
adopt a heuristic search through profile space in an effort to find low-support
equilibria. In order to prevent our results from being too dependent on equi-
libria found early in the search process, we adopt a set of heuristic criteria
that promote thorough coverage of the profile space, while still biasing toward
low-support equilibria.

Our search criteria rely on sampling from views of the game where only a
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subset of the strategies is considered. We refer to these views as subgames.3

We consider a subgame explored if we have (i) evaluated every profile in the
subgame, (ii) found at least one candidate equilibrium in the subgame, and
(iii) for each candidate equilibrium, evaluated all of the one-player deviations
to strategies outside the subgame. We consider a profile evaluated if we have
simulated it enough times to obtain a reliable estimate of expected payoff for
each strategy. A candidate equilibrium is an equilibrium of a subgame, but
whose deviations outside of the subgame may be unevaluated, thus it may or
may not be an equilibrium in the full game.

The stopping criteria for our profile search process are as follows:

Criterion 1. We have found at least one role-symmetric Nash equilibrium.

Criterion 2. We have explored every subgame with a single strategy per role
(i.e., every strategy in self-play by role).

Criterion 3. For every candidate equilibrium found in an explored subgame,
we have explored the subgame formed by adding the best-response strategy to the
support of that candidate, providing that the subgame size is below a threshold.

To meet these criteria, we iteratively apply EGTA using a process adapted
from the inner loop of the procedure defined by Wellman et al. (2013). Pseu-
docode for our profile search process is listed as Algorithm 1.4

We start with a set of subgames R we require to be explored per the criteria.
This set is initialized to the subgames comprising exactly one strategy per role.
For each subgame in this set, we sample all of the profiles in the subgame
and then compute Nash equilibria in the induced sample game using replicator
dynamics and convex optimization.5 For every subgame equilibrium found, we
sample every deviating profile with respect to the full-game strategy set. If
none of those deviations is beneficial, then we have confirmed an equilibrium.
Otherwise, if the deviating subgame is small enough, we add the best-response
deviating subgame to the required set of subgames to explore. Other beneficial
deviating subgames are kept as a backup to explore in case we have explored
all of the required subgames, but found no equilibria.

There are two potential sources of incompleteness in this search process:
non-exhaustive coverage of subgames, and failure to find equilibria within a sub-
game. We could modify Algorithm 1 to ensure finding an equilibrium, by replac-
ing replicator dynamics and convex optimization with a complete equilibrium-
finding algorithm, and modifying the definition of brs to include all deviations
rather than only the beneficial ones. Neither of these measures has proved nec-
essary for this study, as we successfully found at least one role-symmetric Nash

3Not to be confused with the notion of a subgame in extensive-form specifications.
4Our implementation of this procedure is available at

https://github.com/egtaonline/quiesce.
5If neither method finds an equilibrium in a subgame, we gather more profile samples until

it does, as failure to find an equilibrium is often a result of sampling noise in payoff estimates.
However, this never happened in any game discussed here.
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Algorithm 1 Profile Search

define br . Returns the best-response subgame
define brs . Returns all beneficial response subgames
define ξ . Subgame size threshold

C ← ∅ . Confirmed equilibria
R ← {All one-strategy subgames} . Required subgames
S ← ∅ . Explored subgames
B ← ∅ . Backup subgames
while C is empty or R is not empty do

S ← pop(R) or pop(B) . Subgame to simulate
if S 6⊆ S′ ∀S′ ∈ S then . Subgame was not explored
S ← S ∪ {S}
Sample all profiles in S
for all equilibria Q of S found do

Sample all deviating profiles from Q
if |brs(Q)| = 0 then
C ← C ∪ {Q} . Add confirmed equilibrium

else if |S| ≤ ξ then
R ← R∪ {br(Q)}
B ← B ∪ brs(Q) \ {br(Q)}

else
B ← B ∪ brs(Q)

end if
end for

end if
end while
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equilibrium for each game evaluated. We consider this process to exercise rea-
sonable due diligence in equilibrium search, given the practical constraints of
analyzing games this large.

5 Replication of Zhan and Friedman

We start our report of results by presenting our replication of Zhan and Fried-
man (2007), which extends their study in three key ways:

1. The original study separately analyzed games with three classes of dis-
cretized strategies. We investigated a fourth category of game where
agents can choose any strategy from the original three classes.

2. The original study restricted solutions to pure-strategy ε-Nash equilib-
ria. We broadened consideration to include mixed-strategy equilibria, and
accordingly searched more extensively over strategy profiles.

3. We evaluated the found equilibria with many more samples and report
statistical confidence on regret.

Our replicated CDA market simulator is identical to that specified by Zhan
and Friedman except for one detail. Instead of allowing agents to rebid at the
same price, we simply shuffle the agents once and have them submit bids in that
order. Aside from subtle effects on time priority, this should produce identical
results. We confirm empirically that any differences are negligible.

Also, while the precise aggregate efficiency measure used was unspecified in
the original paper, we were able to reproduce the reported efficiency results ex-
actly only by calculating averages over instance efficiencies (i.e., surplus obtained
as a fraction of CE surplus for each instance or zero in a no-trade instance).
We argue that the proper measure of expected efficiency is the expected sur-
plus over the expected CE surplus. This definition appropriately gives more
weight to random instances that allow more surplus and removes the necessity
of defining efficiency in a no-trade scenario.

With this simulator, we applied the equilibrium search methodology pre-
sented in Section 4. We evaluated a total of twelve scenarios formed by three lev-
els of market thickness combined with four classes of shading strategies. Three
of the strategy classes—Standard, Exponential, and Shift—were as introduced
by Zhan and Friedman. We added a union shading class—All—containing 31
strategies: eleven shading levels from each original class, minus two that are re-
dundant because zero shading corresponds to truth-telling in all three original
classes. In order to tractably explore each game, we applied DPR, and reduced
the number of players in each role to four. We considered a profile in each of
these games evaluated if we sampled it 250,000, 50,000, and 25,000 times re-
spectively for the thin, medium, and thick markets, or an order of magnitude
more samples than the previous study. Finally, we set the subgame size limit ξ
for equilibrium search to four, meaning we stopped exploring profiles after we
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had found at least one equilibrium and all unexplored best response subgames
had at least five strategies in support between both roles.

A summary of the experimental results is presented in Figure 3. The equi-
librium efficiency between shading classes in a single market thickness varies
slightly. This is likely due to a few factors including, the choice of discrete
strategies,6 the sampling error inherent in random simulation, and the fact that
our profile search biases towards low support equilibria. Despite these factors,
there is a strong overall trend in the data. As the market gets thinner, the
efficiency of truth telling improves, and that of equilibrium shading degrades.

0.70 1.00Efficiency

Thick
Standard

Exponential
Shi

All
Medium

Standard
Exponential

Shi
All

Thin
Standard

Exponential
Shi

All

Our Equilibria ZF Equilibria Truth-telling

Figure 3: Efficiencies of all found equilibria compared to truth-telling in ev-
ery scenario. Yellow bars represent the truth-telling efficiency in each market
thickness. Blue bars with a line connecting them represent the efficiency of
every role-symmetric equilibria found via our profile exploration method. Red
diamonds represent the efficiencies of each symmetric pure-strategy equilibrium
found by Zhan and Friedman (2007). Efficiency is computed as the expected
surplus over the expected CE surplus for a large sample of profiles drawn from
the equilibrium distribution. Only one equilibrium was found in each of the
Medium environments, likely due to the way DPR handles non-divisible num-
bers of agents—four does not divide ten. Equilibria with access to All strategies
were never subsets of equilibria with access to a restricted set of strategies.
Notably, in all All equilibria, sellers exclusively play Shift strategies (additive
shading), while buyers exclusively play Standard and Exponential strategies
(multiplicative shading)—a result of the asymmetry of the formulation of mul-
tiplicative shading pointed out by Zhan and Friedman (2007).

6In particular, any Exponential shading can be achieved by a Standard shading with

m ∈ {1− e−m′ | m′ ∈ {0, 0.1, . . . , 1}} for buyers and m ∈ {em′ − 1 | m′ ∈ {0, 0.1, . . . , 1}} for
sellers, so the essential difference between the classes is really the choice of discrete shading
levels.
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In addition, our search process failed to find two equilibria from the previ-
ous work. However, not all found equilibria are equally important—we prefer
equilibria with lower regret, and while we cannot confirm that regret of any
equilibrium is low, we can compute confidence bounds on the regret of each equi-
librium. Table 2 (Appendix B) lists all of the equilibria, their efficiency, and a
95% bootstrap upper confidence bound on regret. The equilibria from the orig-
inal study that we did not find have significantly higher—roughly double—the
regret bound of our comparable found equilibria.

6 Financial Market Environment

Our extension enriches the CDA scenario to more closely resemble financial mar-
kets. Our implementation employs a configurable financial market simulator,
related to the system used by Wah et al. (2017). This simulator is not designed
to be directly calibrated to financial data, but to exhibit important qualitative
characteristics of financial markets, like adverse selection, multi-unit holdings,
and agents with the ability to buy and sell. We model a single security traded
in a CDA market with a large but finite number of agents. Prices and time
are fine-grained but discrete, and simulations run for a finite horizon T . Agents
arrive at designated times and submit limit orders to the market. The market
maintains and reveals price quotes reflecting the best outstanding orders. Other
bids in the order book are not visible to agents.

6.1 Valuation Model

Each agent has an individual valuation for the security comprised of private and
common components. The common component is represented as a stochastic
fundamental value. Let ft denote the fundamental value for the security at
time t. The fundamental is generated by a mean-reverting stochastic process:

ft = max
{

0, round
(
f̃t

)}
, f̃t = rf̄ + (1− r)f̃t−1 + σsst, f̃0 = f̄ . (1)

st is a standard normal shock at time t, thus σ2
s controls the volatility of the

fundamental value. Parameter r ∈ [0, 1] specifies the tendency by which the
fundamental reverts back to the mean f̄ ; r = 1 corresponds to a fundamental
process of i.i.d. Gaussian draws around the fundamental mean, while r = 0
corresponds to a martingale Gaussian fundamental.

The time-varying fundamental presents agents with an issue of adverse selec-
tion, as standing orders reflect outdated information from the time submitted.
If the fundamental shifts significantly, subsequently arriving agents are more
likely to transact with orders on the side opposite the direction of change. That
is, a positive price shock will tend to trigger transactions with stale sell orders,
and negative price shocks with stale buys. The degree of adverse selection in our
model depends on the fundamental shock variance σ2

s and the degree of mean
reversion r. In particular, higher values of r damp the fundamental variations,
and thus reduce agents’ exposure to adverse selection.
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The private component of agent i’s valuation is a vector θi containing the
agent-specific marginal utility for acquiring one more unit, relative to the fun-
damental value—similar to the model of Goettler et al. (2009). The vector is
of size 2qmax, where qmax > 0 is the maximum number of units the agent can
be long or short at any time. Element θqi , q ∈ [−qmax, qmax) is the incremental
benefit, over the fundamental, to agent i for gaining one unit of the security
given current position q, where positive q indicates a long position.

We generate θi from a set of 2qmax values drawn independently from a
Gaussian distribution. Let θ̂ ∼ N

(
0, σ2

pv

)
denote one of these drawn values.

To ensure that the valuation reflects diminishing marginal utility, we sort the
2qmax θ̂ values in descending order, and set θq

i respectively.
Agent i’s incremental surplus for trade j is based on its position qj before

the trade, the value of the fundamental at the end of the trading horizon T , and
the transaction price pj :

surplusij =

{
fT − pj + θ

qj
i if buying 1 unit

pj − fT − θ
qj−1
i if selling 1 unit.

A agent’s total surplus is the sum of the agent’s surplus over all transactions.
Since the price and fundamental terms cancel out in exchange, the total surplus

achieved when agent B buys from agent S is θq
B

B − θ
qS−1
S , where qi denotes the

pre-trade position of agent i.

6.2 Trading Strategies

There is an extensive literature on autonomous bidding strategies for CDAs
(Das et al., 2001; Friedman and Rust, 1993; Wellman, 2011). In this study, we
consider trading strategies that are variants of the Zero Intelligence (ZI) fam-
ily (Gode and Sunder, 1993). The ZI strategy is exceedingly simple, but often
employed in agent-based study of financial markets (LeBaron, 2006; Cason and
Friedman, 1996), including recent AI studies of market making (Chakraborty
et al., 2015; Wah and Wellman, 2017), because they have been found to gen-
erate realistic patterns of market behavior (Farmer et al., 2005). Though ZI
agent instances are typically outperformed by more sophisticated alternatives
(Vytelingum et al., 2008; Tesauro and Das, 2001), by using game-theoretic selec-
tion to set ZI strategy parameters we can produce highly competitive behavior
for a given market environment (Wright, 2016). In rough effect, game-theoretic
equilibration serves the parameter-tuning function accomplished through adap-
tation and evolutionary search in the ZI Plus strategies of Cliff (2009).

In our market model, agents get information about the fundamental accord-
ing to an independent geometric process with probability λ of observing the
fundamental (ft) at any specific time. Upon observing the fundamental, agents
enter the market, observe the price quote, withdraw any outstanding orders, and
have the opportunity to submit new ones. If multiple agents get information at
the same time step, they act in a random order.
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We consider two cases for order submission. In the first (single-unit order)
case, agents are assigned on each arrival to either buy or sell, with equal prob-
ability, and accordingly submit an order to buy or sell a single unit. This style
of order submission is representative the standard ZI strategy. In the second
(full-demand order), agents submit orders to both buy and sell. Agents consis-
tently submit their total demand, and are not subject to the random direction
selection of the single-unit order case. In either case, agents may trade any
number of times, as long as their net positions do not exceed their maximum
position (qmax) (either long or short). Since agents withdraw stale orders at
arrival, the arrival rate λ serves as a rough proxy for agent urgency. If an agent
has a lower arrival rate, then it has fewer opportunities to submit orders, which
is particularly constraining in the single-unit order case. With single-unit order-
ing, agents may find it difficult or impossible to achieve their efficient position
levels. In such settings, they have a strong incentive to make each arrival count.
In the full-demand order case agents can achieve their efficient position levels
in one arrival, thus provides a way to evaluate the effect of reducing urgency.

A ZI agent assesses its expected valuation at the time of market entry t,
using an estimate f̂t of the terminal fundamental fT . The estimate is based on
the current fundamental, ft, adjusted to account for mean reversion:

f̂t = (1− ρ) f̄ + ρft, ρ = (1− r)T−t.

The ZI agent then submits a bid shaded from this estimate by a random offset—
the amount of expected surplus it demands from the trade. The amount of
shading is drawn uniformly from the range [Umin, Umax]—two parameters of the
ZI strategy.

We extend the ZI strategy by introducing a threshold parameter η ∈ [0, 1],
whereby if the agent could achieve a fraction η of its requested surplus at the
current price quote, it would simply take that quote rather than posting a limit
order to the book. Setting η = 1 is equivalent to the strategy without employing
the threshold. Settings of η < 1 are often highly advantageous in our simulation
environments, suggesting that providing even this simple ability to condition on
price quote is an important feature in CDA trading strategy.

The threshold parameter can also be used as a means to submit so-called
“fill-or-kill” orders, designed to trade immediately or not at all. Consider the
strategy where Umin = Umax = 105 and η = 10−3. This strategy takes the
outstanding order at the quote—if a surplus of at least 100 is available—or
else posts an order at such an unattractive price that it will never transact.
In this implementation the unfilled order is not literally killed, but the result
is effectively the same. Interestingly, a similar strategy appears in empirical
equilibrium in several of our environments.7

We restrict our analysis to a discretized finite set of the entire strategy
space, shown in Table 1, so we can apply normal-form game analysis techniques.
The set of strategies was chosen starting with a roughly exponential grid of

7Since the fill-or-kill strategy never leaves reasonable orders, in self-play it never trades.
It can however be profitable in mixtures with other strategies.
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Table 1: Strategies considered for equilibrium analysis. Agents shade from
their true belief by a random offset in [Umin, Umax], the result of this draw is the
amount of expected surplus the agent demands from trade. If an agent could
get an η fraction of their desired surplus from an outstanding order, they take
the order instead. Detailed strategy descriptions are in Section 6.2.

(a) Initial set of strategies at roughly
exponentially spaced intervals

Umin Umax η

0 0 1
0 50 1
0 125 1
0 250 1
0 500 1
0 1000 1
0 2000 1

(b) Best response strategies, found via
iterative process of adding best re-
sponse to previous equilibria

Umin Umax η

125 500 1
2000 4000 1

0 500 0.8
0 2000 0.8

125 1000 0.4
29000 30000 0.001

max shading, then adding strategies that appeared frequently as best responses
(among a larger set of heuristic strategies) to equilibria across games. The union
of these two sets has thirteen strategies.

6.3 Market Environment Parameter Settings

We focus our analysis on two basic market settings, where we measure the im-
pact of varying arrival rate, mean reversion, and market thickness. Restricting
our analysis to these two settings allows us to investigate qualitative effects
without having to do an infeasible exhaustive grid search over the space of pa-
rameter configurations. Both environments have sixty six agents and a time
horizon T of 60000. The fundamental mean f̄ is 107, sufficiently large to ensure
that the probability of the fundamental reaching zero is negligible. The fun-
damental shock variance is 106 with mean reversion 0.05, making the a priori
final fundamental variance roughly 107. Private value variance is 5 × 106 so
that the relative importance of private value and common value are close. The
fundamental, private value, and shading parameters are the only parameters
that affect valuation, and thus only their relative values dictate equilibria.

The multi-position setting most closely matches the environment for which
ZI agents were originally defined (Gode and Sunder, 1993). Agents have a
maximum absolute position qmax = 10 (hence the name multi-position), and
follow the single-unit order scheme. As a result, the agents never have more
than one outstanding single-unit order in the market at a time. Agents arrive
with a rate λ of 10−4 giving them six bidding opportunities in expectation,
enough to reach their optimal position, which rarely exceeds four.

The second setting we call the single-position setting. In this setting, agents
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have a maximum position qmax = 1, and follow the full-demand order scheme.8

This setting lifts the restriction that agents have exactly one outstanding single-
unit order at a time, but agents will never hold an absolute position greater than
a single unit (hence the name single-position). Agents arrive with a rate λ of
5×10−5 giving them three entries in expectation, even though agents need only
to arrive once to achieve their optimal position.

6.4 Uniform Shading Analysis

One would hope that the intuition behind the tradeoff of EM and IM inefficiency
in the Zhan and Friedman model—seen in Figure 2—would carry over to this
financial market model as well. However, the situation is more complicated
when agents have multiple opportunities to trade, for multiple units, and are
not restricted to only buying or selling. Figure 4a is a plot of EM and IM
inefficiency for the baseline multi-position setting. Unlike the standard CDA
model, EM and IM inefficiency do not provide clear clues as to how shading
affects efficiency in this model. We hypothesize that the definitions of EM
and IM inefficiency are muddled when agents have the opportunity to trade
counter to their CE position, that is, an agent who should buy a unit might
opportunistically sell one due to advantageous information. Figure 4b is an
identical plot of EM and IM efficiency for the baseline multi-position setting,
except half of the agents were assigned to be buyers, the other half sellers,
allowed to trade only in their assigned directions. When we apply this structure
to the market, we regain the illustrative breakdown of efficiency. It is clear
from these plots that the ability for agents to trade in both directions adds a
significant level of complexity to analyzing the effect of shading on efficiency in
CDAs. We leave a more appropriate breakdown of efficiency when agents can
trade in both directions as an open problem, and instead focus on the effects of
shading in equilibrium.

7 Financial Market Equilibrium Analysis

Using the model described in Section 6, and the methodology to find approxi-
mate role-symmetric Nash equilibria described in Section 4, we can investigate
the effects of equilibrium shading and truth-telling on financial market efficiency.
To measure efficiency in this model, we calculate an agent’s competitive equi-
librium position constrained by its number of arrivals. This is necessary since
agents may not arrive at all. Due to the large number of agents in the simulation,
we used DPR to reduce the effective number of agents to six. We considered a
profile evaluated if we sampled it 10,000 times; at this level, the standard error
of profile payoffs was sufficiently small. We set the subgame size limit ξ = 3,
meaning we stopped exploring profiles after we had found an equilibrium, and
all best response subgames had support over at least four strategies.

8We chose qmax = 1 for full-demand ordering in part because generalizing the ZI strategy
to multiple units in the same direction is not obvious, particularly without adding parameters.
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(a) EM and IM inefficiency in the finan-
cial market model. Unlike the standard
CDA model, this decomposition does not
present a clear picture of how shading af-
fects efficiency.
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(b) EM and IM inefficiency in the fi-
nancial market model when agents are
assigned to be buyers or sellers. With
this restriction, the results are remark-
ably similar to Figure 2.

Figure 4: Uniform shading analysis of the financial market model.

In both the single- and multi-position setting we varied three key parameters
from their baseline value: number of agents (6, 36, 66, 216), arrival rate (0.8,
1, 2, 5, and 10 times baseline), and fundamental mean reversion (0, 0.1, 0.2,
0.4, and 1 times baseline). Increasing the number of agents in a simulation
increases the market thickness. Increasing the arrival rate increases agents’
access to relevant information, decreases the amount of time potentially stale
order sit in the market, and gives agents more opportunities to trade. Finally,
increasing the mean reversion exposes agents to less adverse selection due to
the smaller impact of a shock on the final fundamental price. In each setting,
we analyzed twelve distinct environments corresponding to different levels of
these three parameters. With no mean reversion and other settings at baseline,
the adverse selection is severe enough to preclude all trading. To restore some
profitability in this environment, we compensate by also reducing the shock
variance σ2

s to 100.
Figure 5 compares the efficiency achieved in equilibrium with that produced

by truth-telling agents for each parameter variation. Both the single- and multi-
position setting show identical trends for each variable. As for the simple CDA
model, increasing the number of agents increases the efficiency with equilibrium
shading. Unlike in the simple CDA, truth-telling efficiency for the financial
model also increases with market thickness. This is probably because agents in
our model can retrade, making initial extra-marginal trades less deleterious to
final efficiency. This result illustrates that the relative effect of strategic shad-
ing depends not just on the inherent efficiency of the setting, as increasing the
number of agents improves the truth-telling efficiency, and also the benefit of
equilibrium shading. Increasing either arrival rate or mean reversion has the op-
posite trend, the benefit to equilibrium shading decreases, alongside an increase
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in truth-telling efficiency. This is to be expected, as a limited number of trader
arrivals means little time to correct for bad trades and the increase in adverse
selection from low mean reversion tends to generate more inefficient trades.
Shading ameliorates inefficient trades, yielding an improvement in efficiency in
both environments.

8 Conclusions

Shading in continuous double auctions presents a tradeoff between prevent-
ing low efficiency extra-marginal trades and inhibiting efficient intra-marginal
trades. We employed a simulation-based approach to analyze the effect of strate-
gic bid shading on the efficiency of simple CDA markets and richer financial
markets. We confirmed the results from Zhan and Friedman (2007) using a
more complete equilibrium search. In both market models that we investigated,
we consistently found that strategic bid shading helps efficiency when there are
more agents in the market. In the financial market, we also observe a benefit
to strategic shading when there is a large amount of adverse selection due to a
noisy common valuation or a high level of urgency due to limited trading op-
portunities. Our results strengthen the claims made by Zhan and Friedman by
broadening the search for Nash-equilibria and extending the model to environ-
ments with dynamic elements.

More generally, this phenomenon is highly germane to design of rules and reg-
ulations surrounding CDA markets. For example, measures aimed at promoting
true value revelation—following the typical intuition of mechanism designers—
may be counter-productive to mechanism design goals in this setting. Our
analysis also underscores the need for accounting for strategic behavior when
comparing CDAs to alternative mechanisms, particularly those (e.g., call mar-
kets) that may not exhibit this phenomenon.
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Appendices

A Stylized Examples: Equilibrium Analysis

A.1 Example 2

Let there be two buyers and one seller. One buyer, BL, has valuation vBL with
Pr(vBL = 1) = Pr(vBL = 2) = 0.5. The other buyer, BH , has valuation vBH

with Pr(vBH = 2) = Pr(vBH = 3) = 0.5. The sole seller, S, has valuation
vS = 0. The agents arrive at the market in a uniform random ordering, and get
to observe the order book and their position in the ordering.

In the optimal outcome BH trades with S, for expected welfare (total sur-
plus) 2.5.

The truth-telling outcome is straightforward. If everyone bids their valua-
tions, then when S arrives first, it will trade with the first buyer to enter the
market (welfare = 1

2E[vBL] + 1
2E[vBH ] = 2). When S arrives second, it will also

trade with the first buyer to arrive (welfare = 2); when S arrives last, it will
trade with the best order in the market (welfare = 2.5). The expected welfare
under truth-telling is 1

3 (2 + 2 + 2.5) ≈ 2.167.
To characterize strategic behavior in this example, we adopt perfect Bayesian

equilibrium as our solution concept. We also assume for this construction that
players break ties by accepting indifferent trades; this assumption does not affect
welfare, but allows us to avoid discussing the multitude of qualitatively similar
equilibria due to indifference. If S enters first, it bids 2. This offer will always
trade, since at least one and possibly both of the subsequently arriving buyers
have value at least this high.

If a buyer arrives first, the PBE behavior of that buyer can be described by
the following cases:

1. BL arrives first, vBL = 1. BL offers any x < 1.

2. BL arrives first, vBL = 2. BL offers 4
3 .

3. BH arrives first, vBH = 2. BH offers 4
3 .

4. BH arrives first, vBH = 3. BH offers 4
3 .

If the seller arrives second, it will reject any offer less than 4
3 , and ask for 2,

otherwise it will accept. If another buyer arrives second, it will bid ε over the
current bid if it can profit from doing so. The last agent will take the best offer
it can.

First we show that when S arrives second, it is best responding under its
presumption that the third agent is a price-taker. In Case 1, the third agent is
BH (and S infers this), in which case offering to sell at 2 maximizes surplus.
Cases 2–4 form an information set for S, in which the third agent is BL with
probability 2

3 . If S were to reject the first agent’s bid, its optimal offer would
be 2, yielding an expected surplus of (2

3 )( 1
2 )2 + ( 1

3 )2 = 4
3 . So it may as well
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accept the first agent’s bid. Given S’s strategy, no first-round buyer bid less
than 4

3 would suffice. The only advantage from a greater bid would be to BH
with vBH = 3 if could prevent being outbid by BL with vBL = 2. If BH bid 2 in
this instance, then it would make a guaranteed profit of 1, but by bidding 4

3 it
makes an expected profit of 5

4 = 5
3
3
4 , due to being outbid 25% of the time. As a

result, no first-round buyer benefits from bidding more than 4
3 . The strategies

are therefore in PBE.
When vBL = 2, the seller trades with whichever of BL or BH arrives first.

When vBL = 1, the low buyer’s shading precludes the trade, and so the seller
trades with the high buyer regardless of arrival order. Thus, 3

4 of the time the
seller sells to BH and the other 1

4 the seller sells to BL when it has a valuation
of 2. The expected welfare in this equilibrium is 2.375 = 3

42.5 + 1
42. Strategic

shading significantly improves the efficiency of this market from 0.86 (2.167 /
2.5) to 0.95 (2.375 / 2.5).

A.2 Example 3

Let there be two buyers and one seller, all with i.i.d. uniform private values over
the unit interval. The agents arrive in a uniform random ordering, and observe
the current state of the order book, and the ordering of agents. Since the buyers
are ex ante identical, we refer to the first buyer as buyer 1 (b1) and the second
buyer as buyer 2 (b2).

The social optimum occurs when the seller trades with the largest buyer. If
we let vb represent the largest buyer valuation, then

Optimal Welfare = E [vb − vs | vs < vb] =
1

4
.

If agents tell the truth, and the seller arrives last, it trades with the maximum
of the buyer valuations, and so the welfare is the same as the optimal social
welfare 1

4 . In the other two instances the seller has a chance to trade with the
first buyer before trading with the second. Therefore

Welfareseller not last = E [vb1 − vs | vs ≤ vb1 ] + E [vb2 − vs | vs > vb1 , vs ≤ vb2 ]

=
5

24
.

The efficiency of truth-telling is the expected welfare for truth-telling divided
by the maximum social welfare, or 8

9 = 4
(
2
3

5
24 + 1

3
1
4

)
.

The Perfect Bayesian Equilibrium (PBE) solutions can be calculated using
backward induction. To calculate the efficiency in PBE, we first consider the
case when the seller arrives first. In this case, both buyers will accept any offer
below their valuation. The only strategic decision is the bid the seller should
make. Using similar notation to the social optimum, the seller’s expected profit
for a bid s is

Profitseller = E [s− vs | s < vb] = (s− vs)
(
1− s2

)
.
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This profit is maximized at s∗ = 1
3

(
vs +

√
v2s + 3

)
. The welfare calculation is

the same as in the truthful case, except that the conditions are in terms of s∗

instead of vs. The social welfare when the seller arrives first is therefore
√
3/9.

When the seller arrives in the middle, the last buyer takes the sellers bid
if it exists and the buyer can profit. The seller has a choice between taking
the existing bid or placing a new one, attempting to get more surplus from the
second bidder. The seller makes profit

Profits =

{
b1 − vs take order

E [s− vs | s ≤ vb2 ] place order s.

The optimal bid in the later case is s∗ = 1
2 (1 + vs), which implies that the

seller takes the existing order if vs ≤ 2
√
b1 − 1, otherwise it places an ask at

s∗. A placed ask will always be greater than the existing bid, that is, it never
transacts with the old bid.

The first buyer’s profit conditioned on this information is

Profitb1 = E[vb1 − b1 | vs ≤ 2
√
b1 − 1] = (vb1 − b1) (2

√
b1 − 1).

Which is maximized when b∗1 = 1
18 (1 + 6vb1 +

√
12vb1 + 1), conditioned on

vb1 ≥ 1
4 . The resulting social welfare conditioned of these strategies is 13

5184 (47+

8
√

13).
When the seller arrives last, the first buyer knows it can win only by bidding

over the second buyer’s valuation, thus

Profitb1 = E[vb1 − b1 | vb2 < b1, vs ≤ b1] = b21(vb1 − b1).

The optimal bid is b∗1 = 2
3vb1 . The second bidder will over bid the existing order

if it can profit, but might bid more than epsilon over if it can extract more
expected profit from the seller. The profit for placing a new order is

Profitb2 = E[vb2 − b2 | vs < b2, b1 < b2] = b2(vb2 − b2).

This profit is maximized at b∗2 = 1
2vb2 as long as b∗2 ≥ b1. Buyer 2’s optimal

strategy is to bid min{vb2 ,max{b∗2, b1 + ε}}. The social welfare of this permu-
tation is 19

96 , making the expected social welfare in PBE roughly 0.19.
The efficiency in PBE is the average of each permutation, which is approxi-

mately 0.77, significantly less than the corresponding truth-telling efficiency of
approximately 0.89.
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B Equilibrium Tables

Table 2: Equilibria found in CDA games, by Zhan and Friedman (2007) or
our replication. Where multiple equilibria were found, they are given numbers
to differentiate. Equilibria numbered “ZF” correspond to equilibria found in
the previous work, but not this one, while equilibria labeled with a † were
also identified in the previous work. In the “All” shading class agents can
play any strategy from standard, exponential, or shift. To differentiate these
strategies in the “All” class, Standard shading strategies have a “T” suffix,
Exponential strategies have an “E” suffix, and Shift strategies have an “S”
suffix. “95% Regret” is the bootstrapped 95% upper confidence interval on
regret. Equilibria with support for more than a single strategy use additional
rows for each strategy.

Shading Buyers’ Buyers’ Sellers’ Sellers’ 95%
Density Class Num Shade Prob (%) Shade Prob (%) Efficiency Regret

Thick Truthful – 0.0 100.0 0.0 100.0 0.697 –
Standard 1† 0.4 100.0 0.3 100.0 0.936 0.220

2 0.4 100.0 0.2 69.4 0.941 0.780
0.4 30.6

Exponential 1† 0.5 100.0 0.3 100.0 0.931 0.344
2 0.5 73.9 0.2 100.0 0.944 0.273

0.6 26.1
3 0.5 100.0 0.3 61.3 0.938 0.091

0.2 38.7
Shift 1† 0.4 100.0 0.4 100.0 0.959 0.524

2 0.4 100.0 0.5 87.5 0.942 0.194
0.3 12.5

All 1 0.4T 100.0 0.2S 100.0 0.950 0.416
2 0.4E 100.0 0.3S 86.9 0.953 0.559

0.4S 13.1
3 0.5E 56.0 0.3S 100.0 0.934 0.355

0.4T 27.9
0.3T 16.1

4 0.4E 63.0 0.3S 100.0 0.946 0.343
0.5E 24.2
0.4T 12.8

5 0.4T 100.0 0.2S 95.9 0.950 0.631
0.3S 4.1

Medium Truthful – 0.0 100.0 0.0 100.0 0.787 –
Standard 1† 0.3 100.0 0.3 100.0 0.879 0.108
Exponential 1† 0.4 100.0 0.3 100.0 0.860 0.197
Shift 1† 0.4 100.0 0.4 100.0 0.878 0.274
All 1 0.3T 100.0 0.3S 100.0 0.891 0.336
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Table 2: Equilibria found in CDA games, by Zhan and Friedman (2007) or
our replication. Where multiple equilibria were found, they are given numbers
to differentiate. Equilibria numbered “ZF” correspond to equilibria found in
the previous work, but not this one, while equilibria labeled with a † were
also identified in the previous work. In the “All” shading class agents can
play any strategy from standard, exponential, or shift. To differentiate these
strategies in the “All” class, Standard shading strategies have a “T” suffix,
Exponential strategies have an “E” suffix, and Shift strategies have an “S”
suffix. “95% Regret” is the bootstrapped 95% upper confidence interval on
regret. Equilibria with support for more than a single strategy use additional
rows for each strategy.

Shading Buyers’ Buyers’ Sellers’ Sellers’ 95%
Density Class Num Shade Prob (%) Shade Prob (%) Efficiency Regret

Thin Truthful – 0.0 100.0 0.0 100.0 0.841 –
Standard 1† 0.3 100.0 0.3 100.0 0.838 0.065
Exponential ZF 0.3 100.0 0.2 100.0 0.870 0.391

1 0.4 100.0 0.3 100.0 0.812 0.009
Shift ZF 0.3 100.0 0.3 100.0 0.880 0.241

1 0.3 100.0 0.4 100.0 0.848 0.033
2 0.4 100.0 0.3 93.1 0.845 0.032

0.4 6.9
3 0.4 56.3 0.4 100.0 0.825 0.076

0.3 43.7
4 0.4 90.2 0.4 97.7 0.812 0.092

0.3 9.8 0.3 2.3
5 0.4 88.2 0.4 57.5 0.829 0.059

0.3 11.8 0.3 42.5
All 1 0.3E 100.0 0.3S 100.0 0.859 0.034
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Table 3: Equilibria found in multi-position financial market environments.
Where multiple equilibria were found, they are given numbers to differentiate.
Profiles numbered “T” correspond truth-telling profiles. “95% Regret” is the
bootstrapped 95% upper confidence interval on regret. Equilibria with support
for more than a single strategy use additional rows for each strategy.

Environment Num Umin Umax η Prob (%) Efficiency 95% Regret

4/5×Base Arrival Rate T 0 0 1 100.0 0.702 –
1 0 500 0.8 100.0 0.743 35.096
2 125 500 1 80.6 0.734 6.936

0 500 0.8 19.4
6 Agents T 0 0 1 100.0 0.739 –

1 125 1000 0.4 94.3 0.606 17.519
125 500 1 3.5

0 500 1 2.2
36 Agents T 0 0 1 100.0 0.768 –

1 125 500 1 64.3 0.776 8.426
0 500 0.8 25.3
0 500 1 10.4

2 0 500 1 67.5 0.779 24.002
125 500 1 32.5

0×Base Mean Reversion T 0 0 1 100.0 0.469 –
1 125 1000 0.4 55.2 0.602 36.613

29000 30000 0.001 44.8
1/10×Base Mean Reversion T 0 0 1 100.0 0.757 –

1 125 1000 0.4 49.9 0.761 98.385
125 500 1 46.6

0 500 1 3.5
1/5×Base Mean Reversion T 0 0 1 100.0 0.766 –

1 125 500 1 97.7 0.783 37.485
0 500 0.8 2.3

2 0 500 1 63.0 0.793 47.580
0 250 1 26.3

125 1000 0.4 10.6
2/5×Base Mean Reversion T 0 0 1 100.0 0.769 –

1 0 250 1 70.9 0.811 60.549
0 500 1 29.1

2 0 500 0.8 97.5 0.797 40.140
125 1000 0.4 2.5

3 125 500 1 82.1 0.781 44.436
125 1000 0.4 14.8

0 500 0.8 3.1
4 0 500 0.8 45.1 0.795 19.879

125 500 1 44.1
0 125 1 10.7
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Table 3: Equilibria found in multi-position financial market environments.
Where multiple equilibria were found, they are given numbers to differentiate.
Profiles numbered “T” correspond truth-telling profiles. “95% Regret” is the
bootstrapped 95% upper confidence interval on regret. Equilibria with support
for more than a single strategy use additional rows for each strategy.

Environment Num Umin Umax η Prob (%) Efficiency 95% Regret

Baseline T 0 0 1 100.0 0.771 –
1 0 500 0.8 80.7 0.802 31.807

0 250 1 19.3
2 0 500 0.8 90.6 0.800 31.260

0 250 1 8.5
125 500 1 0.9

3 125 500 1 43.3 0.800 12.652
0 250 1 29.6
0 500 0.8 27.1

4 0 500 1 55.7 0.805 12.196
0 250 1 23.4
0 125 1 20.8

5 125 500 1 67.7 0.790 15.456
0 500 0.8 21.4
0 500 1 10.9

2×Base Arrival Rate T 0 0 1 100.0 0.955 –
1 0 250 1 94.7 0.957 15.694

125 1000 0.4 5.3
2 0 500 1 87.3 0.941 32.729

29000 30000 0.001 12.7
3 125 500 1 75.9 0.923 52.861

0 500 1 24.1
4 0 500 0.8 83.6 0.945 31.820

0 50 1 8.7
0 125 1 7.7

5 125 500 1 50.1 0.931 26.311
0 500 0.8 36.7
0 500 1 13.1

5×Base Arrival Rate T 0 0 1 100.0 0.997 –
1 0 500 0.8 90.5 0.990 62.958

0 50 1 9.5
2 125 500 1 92.9 0.963 31.901

0 1000 1 7.1
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Table 3: Equilibria found in multi-position financial market environments.
Where multiple equilibria were found, they are given numbers to differentiate.
Profiles numbered “T” correspond truth-telling profiles. “95% Regret” is the
bootstrapped 95% upper confidence interval on regret. Equilibria with support
for more than a single strategy use additional rows for each strategy.

Environment Num Umin Umax η Prob (%) Efficiency 95% Regret

10×Base Arrival Rate T 0 0 1 100.0 0.993 –
1 125 500 1 92.1 0.970 15.152

0 1000 1 7.9
2 125 500 1 91.9 0.969 16.657

0 2000 0.8 7.6
0 250 1 0.5

216 Agents T 0 0 1 100.0 0.774 –
1 0 250 1 78.1 0.823 19.134

0 500 1 21.9
2 0 500 0.8 98.1 0.809 38.010

125 1000 0.4 1.9
3 0 500 0.8 45.2 0.808 3.904

125 500 1 31.0
0 500 1 23.8
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Table 4: Equilibria found in single-position financial market environments.
Where multiple equilibria were found, they are given numbers to differentiate.
Profiles numbered “T” correspond truth-telling profiles. “95% Regret” is the
bootstrapped 95% upper confidence interval on regret. Equilibria with support
for more than a single strategy use additional rows for each strategy.

Environment Num Umin Umax η Prob (%) Efficiency 95% Regret

4/5×Base Arrival Rate T 0 0 1 100.0 0.938 –
1 125 500 1 100.0 0.958 3.992
2 125 1000 0.4 68.3 0.947 12.242

0 1000 1 31.7
6 Agents T 0 0 1 100.0 0.864 –

1 0 2000 0.8 49.1 0.780 5.656
125 1000 0.4 45.7

29000 30000 0.001 5.2
36 Agents T 0 0 1 100.0 0.935 –

1 125 1000 0.4 90.9 0.934 8.409
125 500 1 9.1

0×Base Mean Reversion T 0 0 1 100.0 0.736 –
1 0 2000 0.8 66.6 0.824 34.781

29000 30000 0.001 33.4
1/10×Base Mean Reversion T 0 0 1 100.0 0.925 –

1 0 2000 0.8 100.0 0.880 40.943
2 0 2000 0.8 84.9 0.889 25.701

125 1000 0.4 15.1
3 125 1000 0.4 83.2 0.926 6.577

0 2000 0.8 16.8
1/5×Base Mean Reversion T 0 0 1 100.0 0.943 –

1 125 1000 0.4 77.1 0.947 9.790
0 1000 1 22.9

2 125 500 1 71.8 0.956 51.101
0 500 0.8 28.2

2/5×Base Mean Reversion T 0 0 1 100.0 0.949 –
1 125 1000 0.4 55.1 0.951 12.401

0 1000 1 44.9
2 125 500 1 61.5 0.961 9.872

0 500 0.8 33.7
0 500 1 4.7

Baseline T 0 0 1 100.0 0.952 –
1 0 1000 1 100.0 0.948 8.419
2 125 500 1 77.3 0.963 13.534

0 500 1 22.7
2×Base Arrival Rate T 0 0 1 100.0 0.976 –

1 125 500 1 58.2 0.969 11.489
125 1000 0.4 41.8
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Table 4: Equilibria found in single-position financial market environments.
Where multiple equilibria were found, they are given numbers to differentiate.
Profiles numbered “T” correspond truth-telling profiles. “95% Regret” is the
bootstrapped 95% upper confidence interval on regret. Equilibria with support
for more than a single strategy use additional rows for each strategy.

Environment Num Umin Umax η Prob (%) Efficiency 95% Regret

5×Base Arrival Rate T 0 0 1 100.0 0.976 –
1 0 2000 1 90.8 0.964 18.835

125 500 1 9.0
0 1000 1 0.2

2 125 1000 0.4 65.6 0.972 7.141
0 1000 1 34.4

3 125 1000 0.4 60.0 0.972 7.927
125 500 1 22.3

0 1000 1 17.7
4 125 1000 0.4 71.3 0.970 7.431

0 2000 0.8 15.4
125 500 1 13.2

10×Base Arrival Rate T 0 0 1 100.0 0.971 –
1 0 1000 1 68.4 0.971 13.149

0 2000 1 31.6
2 125 1000 0.4 75.3 0.970 11.784

0 2000 1 24.7
3 125 1000 0.4 77.9 0.970 13.335

0 2000 0.8 22.1
216 Agents T 0 0 1 100.0 0.966 –

1 125 500 1 100.0 0.984 6.245
2 0 500 1 89.5 0.980 13.563

125 1000 0.4 9.8
125 500 1 0.7
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