Knowledge Combination in Graphical Multiagent Models

A graphical multiagent model (GMM) represents a joint distribution over the behavior of a set of agents. One source of knowledge about agents' behavior may come from game-theoretic analysis, as captured by several graphical game representations developed in recent years. GMMs generalize this approach to express arbitrary distributions, based on game descriptions or other sources of knowledge bearing on beliefs about agent behavior. To illustrate the flexibility of GMMs, we exhibit game-derived models that allow probabilistic deviation from equilibrium, as well as models based on heuristic action choice. We investigate three different methods of integrating these models into a single model representing the combined knowledge sources. To evaluate the predictive performance of the combined model, we treat as actual outcome the behavior produced by a reinforcement learning process. We find that combining the two knowledge sources, using any of the methods, provides better predictions than either source alone. Among the combination methods, mixing data outperforms the opinion pool and direct update methods investigated in this empirical trial.

CUI Networks: A Graphical Representation for Conditional Utility Independence

We introduce CUI networks, a compact graphical representation of utility functions over multiple attributes. CUI networks model multiattribute utility functions using the well-studied and widely applicable utility independence concept. We show how conditional utility independence leads to an effective functional decomposition that can be exhibited graphically, and how local, compact data at the graph nodes can be used to calculate joint utility. We discuss aspects of elicitation, network construction, and optimization, and contrast our new representation with previous graphical preference modeling.

Bidding Strategies for Simultaneous Ascending Auctions

Simultaneous ascending auctions present agents with various strategic problems, depending on preference structure. As long as bids represent non-repudiable offers, submitting non-contingent bids to separate auctions entails an exposure problem: bidding to acquire a bundle risks the possibility of obtaining an undesired subset of the goods. With multiple goods (or units of a homogeneous good) bidders also need to account for their own effects on prices. Auction theory does not provide analytic solutions for optimal bidding strategies in the face of these problems. We present a new family of decision-theoretic bidding strategies that use probabilistic predictions of final prices: self-confirming distribution-prediction strategies. Bidding based on these is provably not optimal in general. But evidence using empirical game-theoretic methods we developed indicates the strategy is quite effective compared to other known methods when preferences exhibit complementarities. When preferences exhibit substitutability, simpler demand-reduction strategies address the own price effect problem more directly and perform better.

Stronger CDA Strategies through Empirical Game-Theoretic Analysis and Reinforcement Learning

We present a general methodology to automate the search for equilibrium strategies in games derived from computational experimentation. Our approach interleaves empirical game-theoretic analysis with reinforcement learning. We apply this methodology to the classic Continuous Double Auction game, conducting the most comprehensive CDA strategic study published to date. Empirical game analysis confirms prior findings about the relative performance of known strategies. Reinforcement learning derives new bidding strategies from the empirical equilibrium environment. Iterative application of this approach yields strategies stronger than any other published CDA bidding policy, culminating in a new Nash equilibrium supported exclusively by our learned strategies.

Strategic Modeling of Information Sharing Among Data Privacy Attackers

Q Duong, K LeFevre, and MP Wellman Informatica 34:151-158, 2010. Original version presented at the IJCAI-09 Workshop on Quantitative Risk Analysis for Security Applications. Abstract Research in privacy-preserving data publishing has revealed…

Learning Improved Entertainment Trading Strategies for the TAC Travel Game

For almost five years we have continually operated a simulation testbed exploring a variety of strategies for the TAC Travel game. Building on techniques developed in our recent study of continuous double auctions, we performed an equilibrium analysis of our testbed data, and employed reinforcement learning in the equilibrium environment to derive a new entertainment strategy for this domain. A second iteration of this process led to further improvements. We thus demonstrate that interleaving empirical game-theoretic analysis with reinforcement learning in an effective method for generating stronger trading strategies in this domain.

Learning Graphical Game Models

Graphical games provide compact representation of a multiagent interaction when agents' payoffs depend only on actions of agents in their local neighborhood. We formally describe the problem of learning a graphical game model from limited observation of the payoff function, define three performance metrics for evaluating learned games, and investigate several learning algorithms based on minimizing empirical loss. Our first algorithm is a branch-and-bound search, which takes advantage of the structure of the empirical loss function to derive upper and lower bounds on loss at every node of the search tree. We also examine a greedy heuristic and local search algorithms. Our experiments with directed graphical games show that (i) when only a small sample of profile payoffs is available, branch-and-bound significantly outperforms other methods, and has competitive running time, but (ii) when many profiles are observed, greedy is nearly optimal and considerably better than other methods, at a fraction of branch-and-bound's running time. The results are comparable for undirected graphical games and when payoffs are sampled with noise.

Information Feedback and Efficiency in Multiattribute Double Auctions

We investigate tradeoffs among expressiveness, operational cost, and economic efficiency for a class of multiattribute double-auction markets. To enable polynomial-time clearing and information feedback operations, we restrict the bidding language to a form of multiattribute OR-of-XOR expressions. We then consider implications of this restriction in environments where bidders' preferences lie within a strictly larger class, that of complement-free valuations. Using valuations derived from a supply chain scenario, we show that an iterative bidding protocol can overcome the limitations of this language restriction. We further introduce a metric characterizing the degree to which valuations violate the substitutes condition, theoretically known to guarantee efficiency, and present experimental evidence that the actual efficiency loss is proportional to this metric.

Generalization Risk Minimization in Empirical Game Models

Experimental analysis of agent strategies in multiagent systems presents a tradeoff between granularity and statistical confidence. Collecting a large amount of data about each strategy profile improves confidence, but restricts the range of strategies and profiles that can be explored. We propose a flexible approach, where multiple game-theoretic formulations can be constructed to model the same underlying scenario (observation dataset). The prospect of incorrectly selecting an empirical model is termed generalization risk, and the generalization risk framework we describe provides a general criterion for empirical modeling choices, such as adoption of factored strategies or other structured representations of a game model. We propose a principled method of managing generalization risk to derive the optimal game-theoretic model for the observed data in a restricted class of models. Application to a large dataset generated from a trading agent scenario validates the method.