Z Li and MP Wellman

33rd International Joint Conference on Artificial Intelligence (IJCAI), August 2024. Forthcoming.

Best Paper Award at 16th Adaptive and Learning Agents (ALA) Workshop at AAMAS, May 2024.


Evaluating deep multiagent reinforcement learning (MARL) algorithms is complicated by stochasticity in training and sensitivity of agent performance to the behavior of other agents. We propose a meta-game evaluation framework for deep MARL, by framing each MARL algorithm as a meta-strategy, and repeatedly sampling normal-form empirical games over combinations of meta-strategies resulting from different random seeds. Each empirical game captures both self-play and cross-play factors across seeds. These empirical games provide the basis for constructing a sampling distribution, using bootstrapping, over a variety of game analysis statistics. We use this approach to evaluate state-of-the-art deep MARL algorithms on a class of negotiation games. From statistics on individual payoffs, social welfare, and empirical best-response graphs, we uncover strategic relationships among self-play, population-based, model-free, and model-based MARL methods.We also investigate the effect of run-time search as a meta-strategy operator, and find via meta-game analysis that the search version of a meta-strategy generally leads to improved performance.