E Wah and MP Wellman
Algorithmic Finance 5:69-93, 2016.
Abstract
We study the effect of latency arbitrage on allocative efficiency and liquidity in fragmented financial markets. We employ a simple model of latency arbitrage in which a single security is traded on two exchanges, with price quotes available to regular traders only after some delay. An infinitely fast arbitrageur reaps profits when the two markets diverge due to this latency in cross-market communication. Using an agent-based approach, we simulate interactions between high-frequency and zero-intelligence trading agents. From simulation data over a large space of strategy combinations, we estimate game models and compute strategic equilibria in a variety of market environments. We then evaluate allocative efficiency and market liquidity in equilibrium, and we find that market fragmentation and the presence of a latency arbitrageur reduces total surplus and negatively impacts liquidity. By replacing continuous-time markets with periodic call markets, we eliminate latency arbitrage opportunities and achieve further efficiency gains through the aggregation of orders over short time periods.
Downloads
- article (publisher site)
- local copy